Do you want to publish a course? Click here

Spectral variability of planetary nebulae and related objects

101   0   0.0 ( 0 )
 Added by Kondratyeva Ludmila
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The results of long-term spectral observations were used to search for changes in planetary nebulae and emission-line stars. Significant increase of excitation degree is found in two objects: M1-6 and M1-11.



rate research

Read More

281 - Bruce J. Hrivnak , Wenxian Lu , 2015
We present new light curves covering 14 to 19 years of observations of four bright proto-planetary nebulae (PPNs), all O-rich and of F spectral type. They each display cyclical light curves with significant variations in amplitude. All four were previously known to vary in light. Our data were combined with published data and searched for periodicity. The results are as follows: IRAS 19475+3119 (HD 331319; 41.0 days), 17436+5003 (HD 161796; 45.2 days), 19386+0155 (101.8 days), and 18095+2704 (113.3 days). The two longer periods are in agreement with previous studies while the two shorter periods each reveal for the first time reveal a dominant period over these long observing intervals. Multiple periods were also found for each object. The secondary periods were all close to the dominant periods, with P2/P1 ranging from 0.86 to 1.06. The variations in color reveal maximum variations in T(eff) of 400 to 770 K. These variations are due to pulsations in these post-AGB objects. Maximum seasonal light variations are all less than 0.23 mag (V), consistent for their temperatures and periods with the results of Hrivnak et al. (2010) for 12 C-rich PPNs. For all of these PPNs, there is an inverse relationship between period and temperature; however, there is a suggestion that the period-temperature relationship may be somewhat steeper for the O-rich than for the C-rich PPNs.
We have investigated the light variability in a sample of 22 carbon-rich post-AGB stars in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC), based primarily on photometric data from the OGLE survey. All are found to vary. Dominant periods are found in eight of them; these periods range from 49 to 157 days, and most of these stars have F spectral types. These eight are found to be similar to the Milky Way Galaxy (MWG) carbon-rich proto-planetary nebulae (PPNs) in several ways: (a) they are in the same period range of ~38 to ~160 days, (b) they have similar spectral types, (c) they are (all but one) redder when fainter, (d) they have multiple periods, closely spaced in time, with a average ratio of secondary to primary period of ~1.0, and as an ensemble, (e) they show a trend of decreasing period with increasing temperature, and (f) they show a trend of decreasing amplitude with decreasing period. However, they possibly differ in that the decreasing trend of period with temperature may be slightly offset from that of the MWG. These eight are classified as PPNs. The other 14 all show evidence of variability on shorter timescales. They are likely hotter PPNs or young planetary nebulae. However, in the MWG the numbers of PPNs peak in the F-G spectral types, while it appears that in the LMC they peak at a hotter B spectral type. One of the periodic ones shows a small, R Coronae Borealis-type light curve drop.
180 - Thomas Rauch 2007
Spectral analysis by means of NLTE model atmospheres has presently arrived at a high level of sophistication. High-resolution spectra of central stars of planetary nebulae can be reproduced in detail from the infrared to the X-ray wavelength range. In the case of LSV +4621, the exciting star of Sh 2-216, we demonstrate the state-of-the-art in the determination of photospheric properties like, e.g., effective temperature, surface gravity, and abundances of elements from hydrogen to nickel. From such detailed model atmospheres, we can reliably predict the ionizing spectrum of a central star which is a necessary input for the precise analysis of its ambient nebula. NLTE model-atmosphere spectra, however, are not only accessible for specialists. In the framework of the German Astrophysical Virtual Observatory (GAVO), we provide pre-calculated grids of tables with synthetic spectra of hot, compact stars as well as a tool to calculate individual model-atmosphere spectra in order to make the use of synthetic stellar spectra as easy as the use of blackbody flux distributions had been in the last century.
Context. At least 492 central stars of Galactic planetary nebulae (CSPNs) have been assigned spectral types. Since many CSPNs are faint, these classification efforts are frequently made at low spectral resolution. However, the stellar Balmer absorption lines are contaminated with nebular emission; therefore in many cases a low-resolution spectrum does not enable the determination of the H abundance in the CSPN photosphere. Whether or not the photosphere is H deficient is arguably the most important fact we should expect to extract from the CSPN spectrum, and should be the basis for an adequate spectral classification system. Aims. Our purpose is to provide accurate spectral classifications and contribute to the knowledge of central stars of planetary nebulae and stellar evolution. Methods. We have obtained and studied higher quality spectra of CSPNs described in the literature as weak emission-line star (WELS). We provide descriptions of 19 CSPN spectra. These stars had been previously classified at low spectral resolution. We used medium-resolution spectra taken with the Gemini Multi-Object Spectrograph (GMOS). We provide spectral types in the Morgan-Keenan (MK) system whenever possible. Results. Twelve stars in our sample appear to have normal H rich photospheric abundances, and five stars remain unclassified. The rest (two) are most probably H deficient. Of all central stars described by other authors as WELS, we find that at least 26% of them are, in fact, H rich O stars, and at least 3% are H deficient. This supports the suggestion that the denomination WELS should not be taken as a spectral type, because, as a WELS based on low-resolution spectra, it cannot provide enough information about the photospheric H abundance.
Context. There are more than 3000 true and probable known Galactic Planetary Nebulae (PNe), but only for 13% of them there is central star spectroscopic information available. Aims. To contribute to the knowledge of central stars of planetary nebulae and star evolution. Methods. We undertook a spectroscopic survey of central stars of PNe in low resolution and compiled a large list of central stars for which information was dispersed in the literature. Results. We complete a catalogue of 492 true and probable CSPN and we provide a preliminary spectral classification for 45 central star of PNe, This made it possible to update the proportion of CSPN with atmosphere poor in hydrogen with regard to the whole in at least 30% and contribute with statistical information that allow to infer the origin of H-poor stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا