Do you want to publish a course? Click here

Neon Abundances in B-Stars of the Orion Association: Solving the Solar Model Problem?

161   0   0.0 ( 0 )
 Added by Katia Cunha
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on non-LTE Ne abundances for a sample of B-type stellar members of the Orion Association. The abundances were derived by means of non-LTE fully metal-blanketed model atmospheres and extensive model atoms with updated atomic data. We find that these young stars have a very homogeneous abundance of A(Ne) = 8.27 +/- 0.05. This abundance is higher by ~0.4 dex than currently adopted solar value, A(Ne)=7.84, which is derived from lines produced in the corona and active regions. The general agreement between the abundances of C, N, and O derived for B stars with the solar abundances of these elements derived from 3-D hydrodynamical models atmospheres strongly suggests that the abundance patterns of the light elements in the Sun and B stars are broadly similar. If this hypothesis is true, then the Ne abundance derived here is the same within the uncertainties as the value required to reconcile solar models with helioseismological observations.



rate research

Read More

154 - Simone Daflon 2009
Sulfur abundances are derived for a sample of ten B main-sequence star members of the Orion association. The analysis is based on LTE plane-parallel model atmospheres and non-LTE line formation theory by means of a self-consistent spectrum synthesis analysis of lines from two ionization states of sulfur, SII and SIII. The observations are high-resolution spectra obtained with the ARCES spectrograph at the Apache Point Observatory. The abundance distribution obtained for the Orion targets is homogeneous within the expected errors in the analysis: A(S)=7.15+/-0.05. This average abundance result is in agreement with the recommended solar value (both from modelling of the photospheres in 1-D and 3-D, and meteorites) and indicates that little, if any, chemical evolution of sulfur has taken place in the last ~4.5 billion years. The sulfur abundances of the young stars in Orion are found to agree well with results for the Orion nebulae, and place strong constraints on the amount of sulfur depletion onto grains as being very modest or nonexistent. The sulfur abundances for Orion are consistent with other measurements at a similar galactocentric radius: combined with previous results for other OB-type stars produce a relatively shallow sulfur abundance gradient with a slope of -0.037+/-0.012 dex/kpc.
139 - K. Cunha , I. Hubeny , T. Lanz 2011
We present non-LTE oxygen abundances for a sample of B stars in the Orion association. The abundance calculations included non-LTE line formation and used fully blanketed non-LTE model atmospheres. The stellar parameters were the same as adopted in the previous study by Cunha & Lambert (1994). We find that the young Orion stars in this sample of 10 stars are described by a single oxygen abundance with an average value of A(O)=8.78 and a small dispersion of +/- 0.05 dex, which is of the order of the uncertainties in the analysis. This average oxygen abundance compares well with the average oxygen abundance obtained previously in Cunha & Lambert (1994): A(O) = 8.72 +/- 0.13 although this earlier study, based upon non-blanketed model atmospheres in LTE, displayed larger scatter. Small scatter of chemical abundances in Orion B stars had also been found in our previous studies for neon and argon; all based on the same effective temperature scale. The derived oxygen abundance distribution for the Orion association compares well with other results for the oxygen abundance in the solar neighborhood.
The recent downward revision of the solar photospheric abundances now leads to severe inconsistencies between the theoretical predictions for the internal structure of the Sun and the results of helioseismology. There have been claims that the solar neon abundance may be underestimated and that an increase in this poorly-known quantity could alleviate (or even completely solve) this problem. Early-type stars in the solar neighbourhood are well-suited to testing this hypothesis because they are the only stellar objects whose absolute neon abundance can be derived from the direct analysis of photospheric lines. Here we present a fully homogeneous NLTE abundance study of the optical Ne I and Ne II lines in a sample of 18 nearby, early B-type stars, which suggests log epsilon(Ne)=7.97+/-0.07 dex (on the scale in which log epsilon[H]=12) for the present-day neon abundance of the local ISM. Chemical evolution models of the Galaxy only predict a very small enrichment of the nearby interstellar gas in neon over the past 4.6 Gyr, implying that our estimate should be representative of the Sun at birth. Although higher by about 35% than the new recommended solar abundance, such a value appears insufficient by itself to restore the past agreement between the solar models and the helioseismological constraints.
To revisit the long-standing problem of possible inconsistency concerning the oxygen composition in the current galactic gas and in the solar atmosphere (i.e., the former being appreciably lower by ~0.3 dex) apparently contradicting the galactic chemical evolution, we carried out oxygen abundance determinations for 64 mid- through late-B stars by using the O I 6156-8 lines while taking into account the non-LTE effect, and compared them with the solar O abundance established in the same manner. The resulting mean oxygen abundance was <A(O)> = 8.71 (+/- 0.06), which means that [O/H] (star-Sun differential abundance) is ~-0.1, the difference being less significant than previously thought. Moreover, since the 3D correction may further reduce the reference solar oxygen abundance (8.81) by ~0.1 dex, we conclude that the photospheric O abundances of these B stars are almost the same as that of the Sun. We also determined the non-LTE abundances of neon for the sample B stars from Ne I 6143/6163 lines to be <A(Ne)> = 8.02 (+/- 0.09), leading to the Ne-to-O ratio of ~0.2 consistent with the recent studies. This excludes a possibility of considerably high Ne/O ratio once proposed as a solution to the confronted solar model problem.
407 - A. Maggio 2007
Following the Chandra Orion Ultradeep Project (COUP) observation, we have studied the chemical composition of the hot plasma in a sample of 146 X-ray bright pre-main sequence stars in the Orion Nebula Cluster. We report measurements of individual element abundances for a subsample of 86 slightly-absorbed and bright X-ray sources, using low resolution X-ray spectra obtained from the Chandra ACIS instrument. The X-ray emission originates from a plasma with temperatures and elemental abundances very similar to those of active coronae in older stars. A clear pattern of abundances vs. First Ionization Potential (FIP) is evident if solar photospheric abundances are assumed as reference. The results are validated by extensive simulations. The observed abundance distributions are compatible with a single pattern of abundances for all stars, although a weak dependence on flare loop size may be present. The abundance of calcium is the only one which appears to vary substantially between stars, but this quantity is affected by relatively large uncertainties. The ensemble properties of the X-ray bright COUP sources confirm that the iron in the emitting plasma is underabundant with respect to both the solar composition and to the average stellar photospheric values. Comparison of the present plasma abundances with those of the stellar photospheres and those of the gaseous component of the nebula, indicates a good agreement for all the other elements with available measurements, and in particular for the high-FIP elements (Ne, Ar, O, and S) and for the low-FIP element Si. We conclude that there is evidence of a significant chemical fractionation effect only for iron, which appears to be depleted by a factor 1.5--3 with respect to the stellar composition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا