Do you want to publish a course? Click here

Constraining fundamental physics with the cosmic microwave background

90   0   0.0 ( 0 )
 Added by Anthony Challinor
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The temperature anisotropies and polarization of the cosmic microwave background (CMB) radiation provide a window back to the physics of the early universe. They encode the nature of the initial fluctuations and so can reveal much about the physical mechanism that led to their generation. In this contribution we review what we have learnt so far about early-universe physics from CMB observations, and what we hope to learn with a new generation of high-sensitivity, polarization-capable instruments.



rate research

Read More

The cosmic microwave background (CMB) encodes information about the content and evolution of the universe. The presence of light, weakly interacting particles impacts the expansion history of the early universe, which alters the temperature and polarization anisotropies of the CMB. In this way, current measurements of the CMB place interesting constraints on the neutrino energy density and mass, as well as on the abundance of other possible light relativistic particle species. We present the status of an on-going 1500 sq. deg. survey with the SPT-3G receiver, a new mm-wavelength camera on the 10-m diameter South Pole Telescope (SPT). The SPT-3G camera consists of 16,000 superconducting transition edge sensors, a 10x increase over the previous generation camera, which allows it to map the CMB with an unprecedented combination of sensitivity and angular resolution. We highlight projected constraints on the abundance of sterile neutrinos and the sum of the neutrino masses for the SPT-3G survey, which could help determine the neutrino mass hierarchy.
72 - F. Giovi 2003
We consider the influence of the dark energy dynamics at the onset of cosmic acceleration on the Cosmic Microwave Background (CMB) bispectrum, through the weak lensing effect induced by structure formation. We study the line of sight behavior of the contribution to the bispectrum signal at a given angular multipole $l$: we show that it is non-zero in a narrow interval centered at a redshift $z$ satisfying the relation $l/r(z)simeq k_{NL}(z)$, where the wavenumber corresponds to the scale entering the non-linear phase, and $r$ is the cosmological comoving distance. The relevant redshift interval is in the range $0.1lsim zlsim 2$ for multipoles $1000gsimellgsim 100$; the signal amplitude, reflecting the perturbation dynamics, is a function of the cosmological expansion rate at those epochs, probing the dark energy equation of state redshift dependence independently on its present value. We provide a worked example by considering tracking inverse power law and SUGRA Quintessence scenarios, having sensibly different redshift dynamics and respecting all the present observational constraints. For scenarios having the same present equation of state, we find that the effect described above induces a projection feature which makes the bispectra shifted by several tens of multipoles, about 10 times more than the corresponding effect on the ordinary CMB angular power spectrum.
Neutral hydrogen around high-z QSO and an optical depth tau ~ 0.17 can be reconciled if reionization is more complex than a single transition at z ~ 6-8. Tracing its details could shed a new light on the first sources of radiation. Here we discuss how far such details can be inspected through planned experiments on CMB large-scale anisotropy and polarization, by simulating an actual data analysis. By considering a set of double reionization histories of Cen (2003) type, a relevant class of models not yet considered by previous works, we confirm that large angle experiments rival high resolution ones in reconstructing the reionization history. We also confirm that reionization histories, studied with the prior of a single and sharp reionization, yield a biased tau, showing that this bias is generic. We further find a monotonic trend in the bias for the models that we consider, and propose an explanation of the trend, as well as the overall bias. We also show that in long-lived experiments such a trend can be used to discriminate between single and double reionization patterns.
We review the theory of the temperature anisotropy and polarization of the cosmic microwave background (CMB) radiation, and describe what we have learned from current CMB observations. In particular, we discuss how the CMB is being used to provide precise measurements of the composition and geometry of the observable universe, and to constrain the physics of the early universe. We also briefly review the physics of the small-scale CMB fluctuations generated during and after the epoch of reionization, and which are the target of a new breed of arcminute-resolution instruments.
Anisotropies of the cosmic microwave background (CMB) have proven to be a very powerful tool to constrain dark matter annihilation at the epoch of recombination. However, CMB constraints are currently derived using a number of reasonable but yet un-tested assumptions that could potentially lead to a misestimation of the true bounds. In this paper we examine the potential impact of these systematic effects. In particular, we separately study the propagation of the secondary particles produced by annihilation in two energy regimes; first following the shower from the initial particle energy to the keV scale, and then tracking the resulting secondary particles from this scale to the absorption of their energy as heat, ionization, or excitation of the medium. We improve both the high and low energy parts of the calculation, in particular finding that our more accurate treatment of losses to sub-10.2 eV photons produced by scattering of high-energy electrons weakens the constraints on particular DM annihilation models by up to a factor of two. On the other hand, we find that the uncertainties we examine for the low energy propagation do not significantly affect the results for current and upcoming CMB data. We include the evaluation of the precise amount of excitation energy, in the form of Lyman-alpha photons, produced by the propagation of the shower, and examine the effects of varying the Helium fraction and Helium ionization fraction. In the recent literature, simple approximations for the fraction of energy absorbed in different channels have often been used to derive CMB constraints: we assess the impact of using accurate versus approximate energy fractions. Finally we check that the choice of recombination code (between RECFAST v1.5 and COSMOREC), to calculate the evolution of the free electron fraction in the presence of dark matter annihilation, introduces negligible differences.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا