Do you want to publish a course? Click here

[TiII] and [NiII] emission from the strontium filament of eta Carinae

80   0   0.0 ( 0 )
 Added by Manuel A. Bautista
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the nature of the [TiII] and [NiII] emission from the so-called strontium filament found in the ejecta of eta Carinae. To this purpose we employ multilevel models of the TiII and NiII systems which are used to investigate the physical condition of the filament and the excitation mechanisms of the observed lines. For the TiII ion, for which no atomic data was previously available, we carry out ab initio calculations of radiative transition rates and electron impact excitation rate coefficients. It is found that the observed spectrum is consistent with the lines being excited in a mostly neutral region with an electron density of the order of $10^7$ cm$^{-3}$ and a temperature around 6000 K. In analyzing three observations with different slit orientations recorded between March~2000 and November~2001 we find line ratios that change among various observations, in a way consistent with changes of up to an order of magnitude in the strength of the continuum radiation field. These changes result from different samplings of the extended filament, due to the different slit orientations used for each observation, and yield clues on the spatial extent and optical depth of the filament. The observed emission indicates a large Ti/Ni abundance ratio relative to solar abundances. It is suggested that the observed high Ti/Ni ratio in gas is caused by dust-gas fractionation processes and does not reflect the absolute Ti/Ni ratio in the ejecta of etacar. We study the condensation chemistry of Ti, Ni and Fe within the filament and suggest that the observed gas phase overabundance of Ti



rate research

Read More

We present critical, long-wavelength observations of Eta Carinae in the submillimetre using SCUBA on the JCMT at 850 and 450 um to confirm the presence of a large mass of warm dust around the central star. We fit a two-component blackbody to the IR-submm spectral energy distribution and estimate between 0.3-0.7 solar masses of dust exists in the nebula depending on the dust absorption properties and the extent of contamination from free-free emission at the SCUBA wavelengths. These results provide further evidence that Eta Carinaes circumstellar nebula contains > 10 solar masses of gas, although this may have been ejected on a longer timescale than previously thought.
126 - M. Tavani , S. Sabatini , E. Pian 2009
We present the results of extensive observations by the gamma-ray AGILE satellite of the Galactic region hosting the Carina nebula and the remarkable colliding wind binary Eta Carinae (Eta Car) during the period 2007 July to 2009 January. We detect a gamma-ray source (1AGL J1043-5931) consistent with the position of Eta Car. If 1AGL J1043-5931 is associated with the Eta Car system our data provide the long sought first detection above 100 MeV of a colliding wind binary. The average gamma-ray flux above 100 MeV and integrated over the pre-periastron period 2007 July to 2008 October is F = (37 +/- 5) x 10-8 ph cm-2 s-1 corresponding to an average gamma-ray luminosity of L = 3.4 x 10^34 erg s-1 for a distance of 2.3 kpc. We also report a 2-day gamma-ray flaring episode of 1AGL J1043-5931 on 2008 Oct. 11-13 possibly related to a transient acceleration and radiation episode of the strongly variable shock in the system.
116 - Nathan Smith , Jon A. Morse 2019
We present the first images of the nebula around eta Carinae obtained with HST/WFC3, including a UV image in the F280N filter that traces MgII emission, plus contemporaneous imaging in the F336W, F658N, and F126N filters that trace near-UV continuum, [NII], and [FeII], respectively. The F336W and F658N images are consistent with previous images in these filters, and F126N shows that for the most part, [FeII] 12567 traces clumpy shocked gas seen in [NII]. The F280N image, however, reveals MgII emission from structures that have not been seen in any previous line or continuum images of eta Carinae. This image shows diffuse MgII emission immediately outside the bipolar Homunculus nebula in all directions, but with the strongest emission concentrated over the poles. The diffuse structure with prominent radial streaks, plus an anticorrelation with ionized tracers of clumpy shocked gas, leads us to suggest that this is primarily MgII resonant scattering from unshocked, neutral atomic gas. We discuss the implied structure and geometry of the MgII emission, and its relation to the Homunculus lobes and various other complex nebular structures. An order of magnitude estimate of the neutral gas mass traced by MgII is 0.02Msun, with a corresponding kinetic energy around 1e47erg. This may provide important constraints on polar mass loss in the early phases of the Great Eruption. We argue that the MgII line may be an excellent tracer of significant reservoirs of freely expanding, unshocked, and otherwise invisible neutral atomic gas in a variety of stellar outflows.
We present a high-resolution image of $eta$~Car. Together with IR and visual observations of the central arcsecond, we use this to discuss the morphological structure of $eta$~Car on the different length scales. We identify three different structural components: a bipolar outflow, an equatorial disk of streamers, and the speckle objects. We discuss models for the kinematics of the whole complex, and propose observations that could settle the question of the structure of $eta$~Car.
350 - Brian C. Thomas 2007
Recently Supernova 2006gy was noted as the most luminous ever recorded, with a total radiated energy of ~10^44 Joules. It was proposed that the progenitor may have been a massive evolved star similar to eta Carinae, which resides in our own galaxy at a distance of about 2.3 kpc. eta Carinae appears ready to detonate. Although it is too distant to pose a serious threat as a normal supernova, and given its rotation axis is unlikely to produce a Gamma-Ray Burst oriented toward the Earth, eta Carinae is about 30,000 times nearer than 2006gy, and we re-evaluate it as a potential superluminous supernova. We find that given the large ratio of emission in the optical to the X-ray, atmospheric effects are negligible. Ionization of the atmosphere and concomitant ozone depletion are unlikely to be important. Any cosmic ray effects should be spread out over ~10^4 y, and similarly unlikely to produce any serious perturbation to the biosphere. We also discuss a new possible effect of supernovae, endocrine disruption induced by blue light near the peak of the optical spectrum. This is a possibility for nearby supernovae at distances too large to be considered dangerous for other reasons. However, due to reddening and extinction by the interstellar medium, eta Carinae is unlikely to trigger such effects to any significant degree.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا