Do you want to publish a course? Click here

Far-Ultraviolet Imaging of the Hubble Deep Field North: Star Formation in Normal Galaxies at z<1

88   0   0.0 ( 0 )
 Added by Harry Teplitz
 Publication date 2006
  fields Physics
and research's language is English
 Authors H. I. Teplitz




Ask ChatGPT about the research

We present far-ultraviolet (FUV) imaging of the Hubble Deep Field North (HDF-N) taken with the Solar Blind Channel of the Advanced Camera for Surveys (ACS/SBC) and the FUV MAMA detector of the Space Telescope Imaging Spectrograph (STIS) onboard the Hubble Space Telescope. The full WFPC2 deep field has been observed at 1600 Angstroms. We detect 134 galaxies and one star down to a limit of FUV_{AB} ~ 29. All sources have counterparts in the WFPC2 image. Redshifts (spectroscopic or photometric) for the detected sources are in the range 0<z<1. We find that the FUV galaxy number counts are higher than those reported by GALEX, which we attribute at least in part to cosmic variance in the small HDF-N field of view. Six of the 13 Chandra sources at z<0.85 in the HDF-N are detected in the FUV, and those are consistent with starbursts rather than AGN. Cross-correlating with Spitzer sources in the field, we find that the FUV detections show general agreement with the expected L_IR/L_UV vs. Beta relationship. We infer star formation rates (SFRs), corrected for extinction using the UV slope, and find a median value of 0.3 Msun/yr for FUV-detected galaxies, with 75% of detected sources have SFR<1 Msun/yr. Examining the morphological distribution of sources, we find that about half of all FUV-detected sources are identied as spiral galaxies. Half of morphologically-selected spheroids at z<0.85 are detected in the FUV, suggesting that such sources have significant ongoing star-formation in the epoch since z=1.



rate research

Read More

70 - E. S. Laird 2005
We present an analysis of the X-ray emission from a large sample of ultraviolet (UV) selected, star forming galaxies with 0.74<z<1.32 in the Hubble Deep Field North (HDF-N) region. By excluding all sources with significant detected X-ray emission in the 2 Ms Chandra observation we are able to examine the properties of galaxies for which the emission in both UV and X-ray is expected to be predominantly due to star formation. Stacking the X-ray flux from 216 galaxies in the soft and hard bands produces significant detections. The derived mean 2-10 keV rest-frame luminosity is 2.97+/-0.26x10^(40) erg/s, corresponding to an X-ray derived star formation rate (SFR) of 6.0+/-0.6 Msolar/yr. Comparing the X-ray value with the mean UV derived SFR, uncorrected for attenuation, we find that the average UV attenuation correction factor is ~3. By binning the galaxy sample according to UV magnitude and colour, correlations between UV and X-ray emission are also examined. We find a strong positive correlation between X-ray emission and rest-frame UV emission. A correlation between the ratio of X-ray-to-UV emission and UV colour is also seen, such that L(X)/L(UV) increases for redder galaxies. Given that X-ray emission offers a view of star formation regions that is relatively unaffected by extinction, results such as these can be used to evaluate the effects of dust on the UV emission from high-z galaxies. For instance we derive a relationship for estimating UV attenuation corrections as a function of colour excess. The observed relation is inconsistent with the Calzetti et al. (2000) reddening law which over predicts the range in UV attenuation corrections by a factor of ~100 for the UV selected z~1 galaxies in this sample (abridged).
We analyze the photometric information contained in individual pixels of galaxies in the Hubble Deep Field North (HDFN) using a new technique, _pixel-z_, that combines predictions of evolutionary synthesis models with photometric redshift template fitting. Each spectral energy distribution template is a result of modeling of the detailed physical processes affecting gas properties and star formation efficiency. The criteria chosen to generate the SED templates is that of sampling a wide range of physical characteristics such as age, star formation rate, obscuration and metallicity. A key feature of our method is the sophisticated use of error analysis to generate error maps that define the reliability of the template fitting on pixel scales and allow for the separation of the interplay among dust, metallicity and star formation histories. This technique offers a number of advantages over traditional integrated color studies. As a first application, we derive the star formation and metallicity histories of galaxies in the HDFN. Our results show that the comoving density of star formation rate, determined from the UV luminosity density of sources in the HDFN, increases monotonically with redshift out to at least redshift of 5. This behavior can plausibly be explained by a smooth increase of the UV luminosity density with redshift coupled with an increase in the number of star forming regions as a function of redshift. We also find that the information contained in individual pixels in a galaxy can be linked to its morphological history. Finally, we derive the metal enrichment rate history of the universe and find it in good agreement with predictions based on the evolving HI content of Lyman-alpha QSO absorption line systems.
72 - I. Labbe 2005
We present deep 3.6 - 8 micron imaging of the Hubble Deep Field South with IRAC on the Spitzer Space Telescope. We study Distant Red Galaxies (DRGs) at z>2 selected by Js - Ks > 2.3 and compare them to a sample of Lyman Break Galaxies (LBGs) at z=2-3. The observed UV-to-8 micron spectral energy distributions are fit with stellar population models to constrain star formation histories and derive stellar masses. We find that 70% of the DRGs are best described by dust-reddened star forming models and 30% are very well fit with old and ``dead models. Using only the I - Ks and Ks - 4.5 micron colors we can effectively separate the two groups. The dead systems are among the most massive at z~2.5 (mean stellar mass <M*> = 0.8 x 10^11 Msun) and likely formed most of their stellar mass at z>5. To a limit of 0.5 x 10^11 Msun their number density is ~10 x lower than that of local early-type galaxies. Furthermore, we use the IRAC photometry to derive rest-frame near-infrared J, H, and K fluxes. The DRGs and LBGs together show a large variation (a factor of 6) in the rest-frame K-band mass-to-light ratios (M/L_K), implying that even a Spitzer 8 micron-selected sample would be very different from a mass-selected sample. The average M/L_K of the DRGs is about three times higher than that of the LBGs, and DRGs dominate the high-mass end. The M/L_K ratios and ages of the two samples appear to correlate with derived stellar mass, with the most massive galaxies being the oldest and having the highest mass-to-light ratios, similar as found in the low-redshift universe.
419 - S. Heinis , V.Buat , M. Bethermin 2012
We study the far-infrared (IR) and sub-millimeter properties of a sample of ultraviolet (UV) selected galaxies at zsim1.5. Using stacking at 250, 350 and 500 um from Herschel Space Observatory SPIRE imaging of the COSMOS field obtained within the HerMES key program, we derive the mean IR luminosity as a function of both UV luminosity and slope of the UV continuum beta. The IR to UV luminosity ratio is roughly constant over most of the UV luminosity range we explore. We also find that the IR to UV luminosity ratio is correlated with beta. We observe a correlation that underestimates the correlation derived from low-redshift starburst galaxies, but is in good agreement with the correlation derived from local normal star-forming galaxies. Using these results we reconstruct the IR luminosity function of our UV-selected sample. This luminosity function recovers the IR luminosity functions measured from IR selected samples at the faintest luminosities (Lir ~ 10^{11} L_sun), but might underestimate them at the bright-end (Lir > 5.10^{11} L_sun). For galaxies with 10^{11}<Lir/L_sun<10^{13}, the IR luminosity function of a UV selection recovers (given the differences in IR-based estimates) 52-65 to 89-112 per cent of the star-formation rate density derived from an IR selection. The cosmic star-formation rate density derived from this IR luminosity function is 61-76 to 100-133 per cent of the density derived from IR selections at the same epoch. Assuming the latest Herschel results and conservative stacking measurements, we use a toy model to fully reproduce the far IR luminosity function from our UV selection at zsim 1.5. This suggests that a sample around 4 magnitudes deeper (i.e. reaching u sim 30 mag) and a large dispersion of the IR to UV luminosity ratio are required.
64 - Alexandra Pope 2006
We present SEDs, Spitzer colours, and IR luminosities for 850 micron selected galaxies in the GOODS-N field. Using the deep Spitzer Legacy images and new data and reductions of the VLA-HDF radio data, we find statistically secure counterparts for 60 per cent (21/35) of our submm sample, and identify tentative counterparts for another 12 objects. This is the largest sample of submm galaxies with statistically secure counterparts detected in the radio and with Spitzer. We find that in most cases the 850 micron emission is dominated by a single 24 micron source. A composite rest-frame SED shows that the submm sources peak at longer wavelengths than those of local ULIRGs of the same luminosity and therefore appear to be cooler. The SEDs of submm galaxies are also different from those of their high redshift neighbours, the near-IR selected BzK galaxies, whose mid-IR to radio SEDs are more like those of local ULIRGs. Using 24 micron. 850 micron and 1.4 GHz observations, we fit templates that span the mid-IR through radio to derived the integrated IR luminosity of the submm galaxies. By themselves, 24 micron and radio fluxes are able to predict LIR reasonably well because they are relatively insensitive to temperature. However, the submm flux by itself consistently overpredicts LIR when using spectral templates which obey the local ULIRG temperature-luminosity relation. The shorter Spitzer wavelengths sample the stellar bump at the redshifts of the submm sources, and we find that the Spitzer photometry alone provides a model independent estimate of the redshift. Using X-ray and mid-IR data, only 5 per cent of our secure counterparts show strong evidence for an active galactic nucleus dominating the IR luminosity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا