Do you want to publish a course? Click here

Absolute timing of the Crab Pulsar at optical wavelengths with STJs

106   0   0.0 ( 0 )
 Added by Tim Oosterbroek
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have observed the Crab Pulsar in the optical with S-Cam, an instrument based on Superconducting Tunneling Junctions (STJs) with $mu$s time resolution. Our aim was to study the delay between the radio and optical pulse. The Crab Pulsar was observed three times over a time span of almost 7 years, on two different locations, using three differe



rate research

Read More

We have observed the pulsar in the Crab Nebula at high radio frequencies and high time resolution. We present continuously sampled data at 640-ns time resolution, and individual bright pulses recorded at down to 0.25-ns time resolution. Combining our new data with previous data from our group and from the literature shows the dramatic changes in the pulsars radio emission between low and high radio frequencies. Below about 5 GHz the mean profile is dominated by the bright Main Pulse and Low-Frequency Interpulse. Everything changes, however, above about 5 GHz; the Main Pulse disappears, the mean profile of the Crab pulsar is dominated by the High-Frequency Interpulse (which is quite different from its low-frequency counterpart) and the two High-Frequency Components. We present detailed observational characteristics of these different components which future models of the pulsars magnetosphere must explain.
We have carried out new, high-frequency, high-time-resolution observations of the Crab pulsar. Combining these with our previous data, we characterize bright single pulses associated with the Main Pulse, both the Low-Frequency and High-Frequency Interpulses, and the two High-Frequency Components. Our data include observations at frequencies ranging from 1 to 43 GHz with time resolution down to a fraction of a nanosecond. We find at least two types of emission physics are operating in this pulsar. Both Main Pulses and Low-Frequency Interpulses, up to about 10 GHz, are characterized by nanoshot emission - overlapping clumps of narrow-band nanoshots, each with its own polarization signature. High-Frequency Interpulses, between 5 and 30 GHz, are characterized by spectral band emission - linearly polarized emission containing about 30 proportionately spaced spectral bands. We cannot say whether the longer-duration High-Frequency Component pulses are due to a scattering process, or if they come from yet another type of emission physics.
The Crab nebula pulsar was observed in 2009 January and December with a novel very fast optical photon counter, Iqueye, mounted at the ESO 3.5 m New Technology Telescope. Thanks to the exquisite quality of the Iqueye data, we computed accurate phase coherent timing solutions for the two observing runs and over the entire year 2009. Our statistical uncertainty on the determination of the phase of the main pulse and the rotational period of the pulsar for short (a few days) time intervals are $approx 1 , mu$s and ~0.5 ps, respectively. Comparison with the Jodrell Bank radio ephemerides shows that the optical pulse leads the radio one by ~240 $mu$s in January and ~160 $mu$s in December, in agreement with a number of other measurements performed after 1996. A third-order polynomial fit adequately describes the spin-down for the 2009 January plus December optical observations. The phase noise is consistent with being Gaussian distributed with a dispersion $sigma$ of $approx 15 , mu$s in most observations, in agreement with theoretical expectations for photon noise-induced phase variability.
90 - Simon Vidrih 2003
Photometric data of the Crab pulsar, obtained in stroboscopic mode over a period of more than eight years, are presented here. The applied Fourier analysis reveals a faint 60 second modulation of the pulsars signal, which we interpret as a free precession of the pulsar.
72 - Roberta Zanin 2017
The last six years have witnessed major revisions of our knowledge about the Crab Pulsar. The consensus scenario for the origin of the high-energy pulsed emission has been challenged with the discovery of a very-high-energy power law tail extending up to 400 GeV, above the expected spectral cut off at a few GeV. Now, new measurements obtained by the MAGIC collaboration extend the energy spectrum of the Crab Pulsar even further, on the TeV regime. Above 400 GeV the pulsed emission comes mainly from the inter-pulse, which becomes more prominent with energy due to a harder spectral index. These findings require gamma-ray production via inverse Compton scattering close to or beyond the light cylinder radius by an underlying particle population with Lorentz factors greater than 5 times 106. We will present those new results and discuss the implications in our current knowledge concerning pulsar environments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا