Do you want to publish a course? Click here

Optical Polarimetry of the Jets of Nearby Radio Galaxies: I. The Data

214   0   0.0 ( 0 )
 Added by Eric S. Perlman
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an overview of new HST imaging polarimetry of six nearby radio galaxies with optical jets. These observations triple the number of extragalactic jets with subarcsecond-resolution optical polarimetry. We discuss the polarization characteristics and optical morphology of each jet. We find evidence of high optical polarization, averaging 20%, but reaching upwards of $sim 50%$ in some objects, confirming that the optical emission is synchrotron, and that the components of the magnetic fields perpendicular to the line of sight are well ordered. We find a wide range of polarization morphologies, with each jet having a somewhat different relationship between total intensity and polarized flux and the polarization position angle. We find two trends in all of these jets. First, jet ``edges are very often associated with high fractional optical polarizations, as also found in earlier radio observations of these and other radio jets. In these regions, the magnetic field vectors appear to track the jet direction, even at bends, where we see particularly high fractional polarizations. This indicates a strong link between the local magnetic field and jet dynamics. Second, optical flux maximum regions are usually well separated from maxima in fractional polarization and often are associated with polarization minima. This trend is not found in radio data and was found in our optical polarimetry of M87 with HST. However, unlike in M87, we do not find a general trend for near-90$^circ$ rotations in the optical polarization vectors near flux maxima. We discuss possibilities for interpreting these trends, as well as implications for jet dynamics, magnetic field structure and particle acceleration.



rate research

Read More

In this paper we analyze the relation between radio, optical continuum and Halpha+[NII] emission from the cores of a sample of 21 nearby Fanaroff & Riley type I galaxies as observed with the VLBA and HST. The emission arises inside the inner tens of parsec of the galaxies. Core radio emission is observed in 19/20 galaxies, optical core continuum emission is detected in 12/21 galaxies and Halpha+[NII] core emission is detected in 20/21 galaxies. We confirm the recently detected linear correlation between radio and optical core emission in FR I galaxies and show that both core emissions also correlate with central Halpha+[NII] emission. The tight correlations between radio, optical and Halpha+[NII] core emission constrain the bulk Lorentz factor to gamma ~ 2-5 and gamma =< 2 for a continuous jet and a jet consisting of discrete blobs, respectively, assuming jet viewing angles in the range [30deg,90deg]. Radio and optical core emissions are likely to be synchrotron radiation from the inner jet, possibly with a significant contribution from emission by an accretion disk and/or flow. Elliptical galaxies with LINER nuclei without large-scale radio jets seem to follow the core emission correlations found in FR I galaxies. This suggests that the central engines could be very similar for the two classes of AGNs.
We obtained optical imaging polarimetry with the ACS/HRC aboard the HST of the 9 closest radio-galaxies in the 3C catalogue with an FR I morphology. The nuclear sources seen in direct HST images in these galaxies are found to be highly polarized with levels in the range ~2-11 % with a median value of 7 %. We discuss the different mechanisms that produce polarized emission and conclude that the only viable interpretation is a synchrotron origin for the optical nuclei. This idea is strengthened by the analogy with the polarization properties of BL Lac objects, providing also further support to the FRI/BL Lac unified model. This confirms previous suggestions that the dominant emission mechanism in low luminosity radio-loud AGN is related to non-thermal radiation produced by the base of their jets. In addition to the nuclear polarization (and to the large scale optical jets), polarization is detected co-spatially with the dusty circumnuclear disks, likely due to dichroic transmission; the polarization vectors are tangential to the disks as expected when the magnetic field responsible for the grains alignment is stretched by differential rotation. We explored the possibility to detect the polarimetric signature of a misaligned radiation beam in FR I, expected in our sources in the frame of the FR I/ BL Lac unification. We did not find this effect in any of the galaxies, but our the results are not conclusive on whether a misaligned beam is indeed present in FR I.
We examine the properties of central dust in nearby quiescent and active early-type galaxies. The active galaxies are low-power radio galaxies with Fanaroff & Riley Type I or I/II radio jets. We focus on the comparison of the dust distributions in the active and quiescent galaxy samples and the relation between the radio jet and dust orientations. Our main observational conclusions are: (a) radio galaxies contain a higher fraction of regular dust ellipses compared to quiescent galaxies which contain more often irregular dust distributions; (b) the morphology, size and orientation of dust ellipses and lanes in quiescent early-types and active early-types with kpc-scale radio jets is very similar; (c) dust ellipses are aligned with the major axis of the galaxy, dust lanes do not show a preferred alignment except for large (>kpc) dust lanes which are aligned with the minor axis of the galaxy. Dust morphologies can be classified as regular ellipses and filamentary lanes. We show that the dust ellipses are consistent with being nearly circular thin disks viewed at random viewing angles. The lanes are likely warped dust structures, which may be in the process of settling down to become regular disks or are being perturbed by a non-gravitational force. We use the observed dust-jet orientations to constrain the three-dimensional angle $theta_{rm DJ}$ between jet and dust. For dust-lane galaxies, the jet is approximately perpendicular to the dust structure, while for dust-ellipse galaxies there is a much wider distribution of $theta_{rm DJ}$. We discuss two scenarios that could explain the dust/jet/galaxy orientation dichotomy. (abridged)
We present a homogeneous and 92 % complete dataset of optical nuclear spectra for the 113 3CR radio sources with redshifts < 0.3, obtained with the Telescopio Nazionale Galileo. For these sources we could obtain uniform and uninterrupted coverage of the key spectroscopic optical diagnostics. The observed sample, including powerful classical FR II radio-galaxies and FR I, together spanning four orders of magnitude in radio-luminosity, provides a broad representation of the spectroscopic properties of radio galaxies. In this first paper we present an atlas of the spectra obtained, provide measurements of the diagnostic emission line ratios, and identify active nuclei with broad line emission. These data will be used in follow-up papers to address the connection between the optical spectral characteristics and the multiwavelength properties of the sample.
The role of starburst winds versus active galactic nuclei (AGN) jets/winds in the formation of the kiloparsec scale radio emission seen in Seyferts is not yet well understood. In order to be able to disentangle the role of various components, we have observed a sample of Seyfert galaxies exhibiting kpc-scale radio emission suggesting outflows, along with a comparison sample of starburst galaxies, with the EVLA B-array in polarimetric mode at 1.4 GHz and 5~GHz. Polarization is clearly detected in three Seyfert galaxies and one starburst galaxy. The Seyfert galaxy NGC,2639, shows highly polarized secondary radio lobes, not observed before, which are aligned perpendicular to the known pair of radio lobes. The additional pair of lobes represent an older epoch of emission. A multi-epoch multi-frequency study of the starburst-Seyfert composite galaxy NGC,3079, reveals that the jet together with the starburst superwind and the galactic magnetic fields might be responsible for the well-known 8-shaped radio lobes observed in this galaxy. We find that many of the Seyfert galaxies in our sample show bubble-shaped lobes, which are absent in the starburst galaxies that do not host an AGN.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا