Do you want to publish a course? Click here

APEX 1 mm line survey of the Orion Bar

124   0   0.0 ( 0 )
 Added by Silvia Leurini
 Publication date 2006
  fields Physics
and research's language is English
 Authors S. Leurini




Ask ChatGPT about the research

Unbiased molecular line surveys are a powerful tool for analyzing the physical and chemical parameters of astronomical objects and are the only means for obtaining a complete view of the molecular inventory for a given source. The present work stands for the first such investigation of a photon-dominated region. The first results of an ongoing millimeter-wave survey obtained towards the Orion Bar are reported. The APEX telescope in combination with the APEX-2A facility receiver was employed in this investigation. We derived the physical parameters of the gas through LVG analyses of the methanol and formaldehyde data. Information on the sulfur and deuterium chemistry of photon-dominated regions is obtained from detections of several sulfur-bearing molecules and DCN.



rate research

Read More

Orion-KL is a well known high mass star forming region that has long been the target of spectral line surveys and searches for complex molecules. One spectral window where the region had never been surveyed is around wavelengths of $lambda$=1 cm. This is an important window to observe due to the fundamental and low energy transitions of numerous complex molecules that indicate the maximum spatial extent of the molecular species; knowing the spatial distribution of a molecule aids in determining the formation mechanism(s) of that molecule. Additionally, there are fewer transitions in this window, reducing confusion caused by blended lines that can be very problematic at shorter wavelengths ($lambda<$3 mm). In this work, we present the first spectral line survey at $lambda$=1 cm of the Orion-KL region. A total of 89 transitions were detected from 14 molecular species and isotopologues and two atomic species. The observations were conducted with the Combined Array for Research in Millimeter-wave Astronomy in both interferometric and single dish modes.
A high density portion of the Orion Molecular Cloud 1 (OMC-1) contains the prominent, warm Kleinmann-Low (KL) nebula that is internally powered by an energetic event plus a farther region in which intermediate to high mass stars are forming. Its outside is affected by ultraviolet radiation from the neighboring Orion Nebula Cluster and forms the archetypical photon-dominated region (PDR) with the prominent bar feature. Its nearness makes the OMC-1 core region a touchstone for research on the dense molecular interstellar medium and PDRs. Using the Atacama Pathfinder Experiment telescope (APEX), we have imaged the line emission from the multiple transitions of several carbon monoxide (CO) isotopologues over the OMC-1 core region. Our observations employed the 2x7 pixel submillimeter CHAMP+ array to produce maps (~ 300 arcsec x 350 arcsec) of 12CO, 13CO, and C18O from mid-J transitions (J=6-5 to 8-7). We also obtained the 13CO and C18O J=3-2 images toward this region. The 12CO line emission shows a well-defined structure which is shaped and excited by a variety of phenomena, including the energetic photons from hot, massive stars in the nearby Orion Nebulas central Trapezium cluster, active high- and intermediate-mass star formation, and a past energetic event that excites the KL nebula. Radiative transfer modeling of the various isotopologic CO lines implies typical H2 densities in the OMC-1 core region of ~10^4-10^6 cm^-3 and generally elevated temperatures (~ 50-250 K). We estimate a warm gas mass in the OMC-1 core region of 86-285 solar masses.
We aim to characterize the outflow properties of a sample of early Class 0 phase low-mass protostars in Orion first identified by the Herschel Space Observatory. We also look for signatures of infall in key molecular lines. CO $J$=3-2 and $J$=4-3 maps toward 16 very young Class 0 protostars were obtained using the Atacama Pathfinder EXperiment (APEX) telescope. We search the data for line wings indicative of outflows and calculate masses, velocities, and dynamical times for the outflows. We use additional HCO$^+$, H$^{13}$CO$^+$, and NH$_3$ lines to look for infall signatures toward the protostars. We estimate the outflow masses, forces, and mass-loss rates based on the CO $J$=3-2 and $J$=4-3 line intensities for 8 sources with detected outflows. We derive upper limits for the outflow masses and forces of sources without clear outflow detections. The total outflow masses for the sources with clear outflow detections are in the range between 0.03 and 0.16 $M_odot$ for CO $J$=3-2, and in the range between 0.02 and 0.10 $M_odot$ for CO $J$=4-3. The outflow forces are in the range between $1.57times10^{-4}$ and $1.16times10^{-3}$ $M_odot$ km s$^{-1}$ yr$^{-1}$ for CO $J$=3-2 and in the range between $1.14times10^{-4}$ and $6.92times10^{-4}$ $M_odot$ km s$^{-1}$ yr$^{-1}$ for CO $J$=4-3. Nine protostars in our sample show asymmetric line profiles indicative of infall in HCO$^+$, compared to H$^{13}$CO$^+$ or NH$_3$. The outflow forces of the protostars in our sample show no correlation with the bolometric luminosity, unlike those found by some earlier studies for other Class 0 protostars. The derived outflow forces for the sources with detected outflows are similar to those found for other - more evolved - Class 0 protostars, suggesting that outflows develop quickly in the Class 0 phase.
Photon Dominated Regions (PDRs) are interfaces between the mainly ionized and mainly molecular material around young massive stars. Analysis of the physical and chemical structure of such regions traces the impact of far-ultraviolet radiation of young massive stars on their environment. We present results on the physical and chemical structure of the prototypical high UV-illumination edge-on Orion Bar PDR from an unbiased spectral line survey with a wide spectral coverage. A spectral scan from 480-1250 GHz and 1410-1910 GHz at 1.1 MHz resolution was obtained by the HIFI instrument onboard the Herschel Space Observatory. For molecules with multiple transitions we used rotational diagrams to obtain excitation temperatures and column densities. For species with a single detected transition we used an optically thin LTE approximation. In case of species with available collisional rates, we also performed a non-LTE analysis to obtain kinetic temperatures, H2 volume densities, and column densities. About 120 lines corresponding to 29 molecules (including isotopologues) have been detected in the Herschel/HIFI line survey, including 11 transitions of CO, 7 transitions of 13CO, 6 transitions of C18O, 10 transitions of H2CO, and 6 transitions of H2O. Most species trace kinetic temperatures in the range between 100 and 150 K and H2 volume densities in the range between 10^5 and 10^6 cm^-3. The species with temperatures and / or densities outside of this range include the H2CO transitions tracing a very high temperature (315 K) and density (1.4x10^6 cm^-3) component and SO corresponding to the lowest temperature (56 K) measured as a part of this line survey. The observed lines/species reveal a range of physical conditions (gas density /temperature) involving structures at high density / high pressure, obsoleting the traditional clump / interclump picture of the Orion Bar.
538 - J. H. He , S. Takahashi , X. Chen 2012
A northern subsample of 89 Spitzer GLIMPSE extended green objects (EGOs), the candidate massive young stellar objects, are surveyed for molecular lines in two 1-GHz ranges: 251.5- 252.5 and 260.188-261.188 GHz. A comprehensive catalog of observed molecular line data and spectral plots are presented. Eight molecular species are undoubtedly detected: H13CO+, SiO, SO, CH3OH, CH3OCH3, CH3CH2CN, HCOOCH3, and HN13C. H13CO+ 3-2 line is detected in 70 EGOs among which 37 ones also show SiO 6-5 line, demonstrating their association to dense gas and supporting the outflow interpretation of the extended 4.5 um excess emission. Our major dense gas and outflow tracers (H13CO+, SiO, SO and CH3OH) are combined with our previous survey of 13CO, 12CO and C18O 1-0 toward the same sample of EGOs for a multi-line multi- cloud analysis of line width and luminosity correlations. Good log-linear correlations are found among all considered line luminosities, which requires a universal similarity of density and thermal structures and probably of shock properties among all EGO clouds to explain. It also requires that the shocks should be produced within the natal clouds of the EGOs. Diverse degrees of correlation are found among the line widths. However, both the line width and luminosity correlations tend to progressively worsen across larger cloud subcomponent size-scales, depicting the increase of randomness across cloud subcomponent sizes. Moreover, the line width correlations among the three isotopic CO 1-0 lines show data scatter as linear functions of the line width itself, indicating that the velocity randomness also increases with whole-cloud sizes and has some regularity behind.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا