Do you want to publish a course? Click here

Optical Counterparts of Ultra-Luminous X-ray Sources identified from Archival Hubble Space Telescope/WFPC2

65   0   0.0 ( 0 )
 Added by Andrew Ptak
 Publication date 2006
  fields Physics
and research's language is English
 Authors A. Ptak




Ask ChatGPT about the research

We present a systematic analysis of archival HST WFPC2 ``Association data sets that correlate with the Chandra positions of a set of 44 ultra-luminous X-ray sources (ULXs) of nearby galaxies. We have improved the Chandra-HST relative astrometry whenever possible. Disparate numbers of potential ULX counterparts are found, and in some cases none are found. The lack of or low number of counterparts in some cases may be due to insufficient depth in the WFPC2 images. Particularly in late-type galaxies, the HST image in the ULX region was often complex or crowded. We therefore address various scenarios for the nature of the ULX since it is not known which, if any, of the sources found are true counterparts. The optical luminosities of the sources are typically in the range 10^4-6 L_sun. In several cases color information is available, with the colors roughly tending to be more red in early-type galaxies. This suggests that, in general, the (potential) counterparts found in early-type galaxies are likely to be older stellar populations, and are probably globular clusters. Several early-type galaxy counterparts have blue colors, which may be due to younger stellar populations in the host galaxies, however these could also be background sources. In spiral galaxies the sources may also be due to localized structure in the disks rather than bound stellar systems. Alternatively some of the counterparts in late-type galaxies may be isolated supergiant stars. The observed X-ray/optical flux ratio is diluted by the optical emission of the cluster in cases where the system is an X-ray binary in a cluster, particularly in the case of a low-mass X-ray binaries in old cluster. (abridged)



rate research

Read More

We report the results of new Hubble Space Telescope imaging of the positions of six ultraluminous X-ray sources (ULXs). Using images in three ACS filters we detect good candidate counterparts to four out of six ULXs, with one more possible detection, and observed magnitudes in the range m ~ 22 - 26 in the F606W filter. The extinction-corrected colours and absolute magnitudes vary from source to source, even after correcting for additional extinction in the host galaxy, and only one counterpart is readily explained as an OB star. Nevertheless, these counterparts are decent candidates for future follow-up in pursuit of dynamical mass constraints on the likely black holes powering these sources.
Many upcoming surveys, particularly in the radio and optical domains, are designed to probe either the temporal and/or the spatial variability of a range of astronomical objects. In the light of these high resolution surveys, we review the subject of ultra-luminous X-ray (ULX) sources, which are thought to be accreting black holes for the most part. We also discuss the sub-class of ULXs known as the hyper-luminous X-ray sources, which may be accreting intermediate mass black holes. We focus on some of the open questions that will be addressed with the new facilities, such as the mass of the black hole in ULXs, their temporal variability and the nature of the state changes, their surrounding nebulae and the nature of the region in which ULXs reside.
It is now widely accepted that most ultraluminous X-ray sources (ULXs) are binary systems whose large (above $10^{39}$ erg s$^{-1}$) apparent luminosities are explained by super-Eddington accretion onto a stellar-mass compact object. Many of the ULXs, especially those containing magnetized neutron stars, are highly variable; some exhibit transient behaviour. Large luminosities might imply large accretion discs that could be therefore prone to the thermal-viscous instability known to drive outbursts of dwarf novae and low-mass X-ray binary transient sources. The aim of this paper is to extend and generalize the X-ray transient disc-instability model to the case of large (outer radius larger than $10^{12}$ cm) accretion discs and apply it to the description of systems with super-Eddington accretion rates at outburst and, in some cases, super-Eddington mass transfer rates. We have used our disc-instability-model code to calculate the time evolution of the accretion disc and the outburst properties. We show that, provided that self-irradiation of the accretion disc is efficient even when the accretion rate exceeds the Eddington value, possibly due to scattering back of the X-ray flux emitted by the central parts of the disc on the outer portions of the disc, heating fronts can reach the discs outer edge generating high accretion rates. We also provide analytical approximations for the observable properties of the outbursts. We have reproduced successfully the observed properties of galactic transients with large discs, such as V404 Cyg, as well as some ULXs such as M51 XT-1. Our model can reproduce the peak luminosity and decay time of ESO 243-39 HLX-1 outbursts if the accretor is a neutron star. Observational tests of our predicted relations between the outburst duration and decay time with peak luminosity would be most welcome.
We present a photometric survey of the optical counterparts of ultraluminous X-ray sources (ULXs) observed with the Hubble Space Telescope in nearby (< 5 Mpc) galaxies. Of the 33 ULXs with Hubble & Chandra data, 9 have no visible counterpart, placing limits on their M_V of ~ -4 to -9, enabling us to rule out O-type companions in 4 cases. The refined positions of two ULXs place them in the nucleus of their host galaxy. They are removed from our sample. Of the 22 remaining ULXs, 13 have one possible optical counterpart, while multiple are visible within the error regions of other ULXs. By calculating the number of chance coincidences, we estimate that 13 +/- 5 are the true counterparts. We attempt to constrain the nature of the companions by fitting the SED and M_V to obtain candidate spectral types. We can rule out O-type companions in 20 cases, while we find that one ULX (NGC 253 ULX2) excludes all OB-type companions. Fitting with X-ray irradiated models provides constraints on the donor star mass and radius. For 7 ULXs, we are able to impose inclination-dependent upper and/or lower limits on the black holes mass, if the extinction to the assumed companion star is not larger than the Galactic column. These are NGC 55 ULX1, NGC 253 ULX1, NGC 253 ULX2, NGC 253 XMM6, Ho IX X-1, IC342 X-1 & NGC 5204 X-1. This suggests that 10 ULXs do not have O companions, while none of the 18 fitted rule out B-type companions.
The nature of ultra-luminous X-ray sources (ULXs), which are off-nuclear extragalactic X-ray sources that exceed the Eddington luminosity for a stellar-mass black hole, is still largely unknown. They might be black hole X-ray binaries in a super-Eddington accretion state, possibly with significant beaming of their emission, or they might harbor a black hole of intermediate mass (10^2 to 10^5 solar masses). Due to the enormous amount of energy radiated, ULXs can have strong interactions with their environment, particularly if the emission is not beamed and if they host a massive black hole. We present early results of a project that uses archival Herschel infrared observations of galaxies hosting bright ULXs in order to constrain the nature of the environment surrounding the ULXs and possible interactions. We already observe a spatial correlation between ULXs and dense clouds of cold material, that will be quantified in subsequent work. Those observations will allow us to test the similarities with the environment of Galactic high mass X-ray binaries. This project will also shed light on the nature of the host galaxies, and the possible factors that could favor the presence of a ULX in a galaxy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا