Do you want to publish a course? Click here

The Hubble diagram extended to z>>1: the gamma-ray properties of GRBs confirm the Lambda-CDM model

174   0   0.0 ( 0 )
 Publication date 2006
  fields Physics
and research's language is English
 Authors C. Firmani




Ask ChatGPT about the research

Tight constraints on cosmological parameters can be obtained with standard candles spanning a range of redshifts as large as possible. We propose to treat SN Ia and long Gamma-Ray Bursts (GRBs) as a single class of candles. Taking advantage of the recent release of the Supernova Legacy Survey and {it the recent finding of a tight correlation among the energetics and other prompt gamma-ray emission properties of GRBs}, we are able to standardize the luminosities/energetics of both classes of objects. In this way we can jointly use GRB and SNIa as cosmological probes to constrain Omega_m and Omega_L and the Dark Energy equation of state parameters through the same Bayesian method that we have, so far, applied to GRBs alone. Despite the large disparity in number (115 SNIa versus 19 GRBs) we show that the constraints on Omega_m and Omega_L are greatly improved by the inclusion of GRBs. More importantly, the result of the combined sample is in excellent agreement with the Lambda-CDM concordance cosmological model and does not require an evolving equation of state for the Dark Energy.



rate research

Read More

In the current framework, the standard parametrization of our Universe is the so-called Lambda Cold Dark Matter ({Lambda}CDM) model. Recently, Risaliti & Lusso (2019) have shown a ~4{sigma} tension with the {Lambda}CDM model through a model-independent parametrization of a Hubble Diagram of supernovae Ia (SNe Ia) from the JLA survey and quasars. Model-independent approaches and independent samples over a wide redshift range are key to testing this tension and any possible systematics. Here we present an analysis of a combined Hubble Diagram of SNe Ia, quasars, and gamma-ray bursts (GRBs) to check the agreement of the quasar and GRB cosmological parameters at high redshifts (z>2) and to test the concordance flat {Lambda}CDM model with improved statistical accuracy. We build a Hubble diagram with SNe Ia from the Pantheon sample (Scolnic et al. 2018), quasars from the Risaliti & Lusso (2019) sample, and GRBs from the Demianski et al. (2017a) sample, where quasars are standardised through the observed non-linear relation between their ultraviolet and X-ray emission and GRBs through the correlation between the spectral peak energy and the isotropic-equivalent radiated energy (the so-called Amati relation). We fit the data with cosmographic models consisting of a fourth-order logarithmic polynomial and a fifth-order linear polynomial, and compare the results with the expectations from a flat {Lambda}CDM model. We confirm the tension between the best fit cosmographic parameters and the {Lambda}CDM model at ~4{sigma} with SNe Ia and quasars, at ~2{sigma} with SNe Ia and GRBs, and at >4{sigma} with the whole SNe Ia+quasars+GRB data set. The completely independent high-redshift Hubble diagrams of quasars and GRBs are fully consistent with each other, strongly suggesting that the deviation from the standard model is not due to unknown systematic effects but to new physics.
We study Planck 2015 cosmic microwave background (CMB) anisotropy data using the energy density inhomogeneity power spectrum generated by quantum fluctuations during an early epoch of inflation in the non-flat $Lambda$CDM model. Unlike earlier analyses of non-flat models, which assumed an inconsistent power-law power spectrum of energy density inhomogeneities, we find that the Planck 2015 data alone, and also in conjunction with baryon acoustic oscillation measurements, are reasonably well fit by a closed $Lambda$CDM model in which spatial curvature contributes a few percent of the current cosmological energy density budget. In this model, the measured Hubble constant and non-relativistic matter density parameter are in good agreement with values determined using most other data. Depending on parameter values, the closed $Lambda$CDM model has reduced power, relative to the tilted, spatially-flat $Lambda$CDM case, and can partially alleviate the low multipole CMB temperature anisotropy deficit and can help partially reconcile the CMB anisotropy and weak lensing $sigma_8$ constraints, at the expense of somewhat worsening the fit to higher multipole CMB temperature anisotropy data. Our results are interesting but tentative; a more thorough analysis is needed to properly gauge their significance.
In this work we discuss a general approach for the dissipative dark matter considering a nonextensive bulk viscosity and taking into account the role of generalized Friedmann equations. This generalized $Lambda$CDM model encompasses a flat universe with a dissipative nonextensive viscous dark matter component, following the Eckart theory of bulk viscosity. In order to compare models and constrain cosmological parameters, we perform Bayesian analysis using one of the most recent observations of Type Ia Supernova, baryon acoustic oscillations, and cosmic microwave background data.
We investigate the $H_0$ tension in a range of extended model frameworks beyond the standard $Lambda$CDM without the data from cosmic microwave background (CMB). Specifically, we adopt the data from baryon acoustic oscillation, big bang nucleosynthesis and type Ia supernovae as indirect measurements of $H_0$ to study the tension. We show that the estimated value of $H_0$ from indirect measurements is overall lower than that from direct local ones regardless of the data sets and a range of extended models to be analyzed, which indicates that, although the significance of the tension varies depending on models, the $H_0$ tension persists in a broad framework beyond the standard $Lambda$CDM model even without CMB data.
Surveying dark matter deficient galaxies (those with dark matter mass to stellar mass ratio $M_{rm dm}/M_{rm star}<1$) in the Illustris simulation of structure formation in the flat-$Lambda$CDM cosmogony, we find $M_{rm star} approx 2 times 10^8, M_sun$ galaxies that have properties similar to those ascribed by citet{vanDokkumetal2018a} to the ultra-diffuse galaxy NGC1052-DF2. The Illustris simulation also contains more luminous dark matter deficient galaxies. Illustris galaxy subhalo 476171 is a particularly interesting outlier, a massive and very compact galaxy with $M_{rm star} approx 9 times 10^{10}, M_sun$ and $M_{rm dm}/M_{rm star} approx 0.1$ and a half-stellar-mass radius of $approx 2$ kpc. If the Illustris simulation and the $Lambda$CDM model are accurate, there are a significant number of dark matter deficient galaxies, including massive luminous compact ones. It will be interesting to observationally discover these galaxies, and to also more clearly understand how they formed, as they are likely to provide new insight into and constraints on models of structure formation and the nature of dark matter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا