Do you want to publish a course? Click here

The Feedback-Regulated Growth of Black Holes and Bulges through Gas Accretion and Starbursts in Cluster Central Dominant Galaxies

97   0   0.0 ( 0 )
 Added by David Rafferty
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of the growth of black holes through accretion and bulges through star formation in 33 galaxies at the centers of cooling flows. Most of these systems show evidence of cavities in the intracluster medium (ICM) inflated by radio jets emanating from their active galactic nuclei (AGN). We present a new and extensive analysis of X-ray cavities in these systems. We find that AGN are energetically able to balance radiative losses (cooling) from the ICM in more than half of our sample. Using a subsample of 17 systems, we examine the relationship between cooling and star formation. We find that the star formation rates are approaching or are comparable to X-ray and far UV limits on the rates of gas condensation onto the central galaxy. The remaining radiative losses could be offset by AGN feedback. The vast gulf between radiative losses and the sink of cooling material, which has been the primary objection to cooling flows, has narrowed and, in some cases, is no longer a serious issue. Using the cavity (jet) powers, we place strong lower limits on the rate of growth of supermassive black holes in central galaxies, and we find that they are growing at an average rate of ~ 0.1 solar masses per year, with some systems growing as quickly as ~ 1 solar mass per year. We find a trend between bulge growth (star formation) and black hole growth that is approximately in accordance with the slope of the local (Magorrian) relation between black hole and bulge mass. However, the large scatter in the trend suggests that bulges and black holes do not always grow in lock step. (Abridged)



rate research

Read More

We explore how the co-evolution of massive black holes (MBHs) and galaxies is affected by environmental effects, addressing in particular MBHs hosted in the central galaxies of clusters (we will refer to these galaxies in general as CGs). Recently the sample of MBHs in CGs with dynamically measured masses has increased, and it has been suggested that these MBH masses (M_BH) deviate from the expected correlations with velocity dispersion (sigma) and mass of the bulge (M_bulge) of the host galaxy: MBHs in CGs appear to be `over-massive. This discrepancy is more pronounced when considering the M_BH-sigma relation than the M_BH-M_bulge one. We show that this behavior stems from a combination of two natural factors, (i) that CGs experience more mergers involving spheroidal galaxies and their MBHs, and (ii) that such mergers are preferentially gas-poor. We use a combination of analytical and semi-analytical models to investigate the MBH-galaxy co-evolution in different environments and find that the combination of these two factors explains the trends observed in current data-sets.
We present a series of simulations of the self--regulated growth of supermassive black holes (SMBHs) in galaxies via three different fueling mechanisms: major mergers, minor mergers, and disk instabilities. The SMBHs in all three scenarios follow the same black hole fundamental plane (BHFP) and correlation with bulge binding energy seen in simulations of major mergers, and observed locally. Furthermore, provided that the total gas supply is significantly larger than the mass of the SMBH, its limiting mass is not influenced by the amount of gas available or the efficiency of black hole growth. This supports the assertion that SMBHs accrete until they reach a critical mass at which feedback is sufficient to unbind the gas locally, terminating the inflow and stalling further growth. At the same time, while minor and major mergers follow the same projected correlations (e.g., the $M_{BH}-sigma$ and Magorrian relations), SMBHs grown via disk instabilities do not, owing to structural differences between the host bulges. This finding is supported by recent observations of SMBHs in pseudobulges and bulges in barred systems, as compared to those hosted by classical bulges. Taken together, this provides support for the BHFP and binding energy correlations as being more fundamental than other proposed correlations in that they reflect the physical mechanism driving the co-evolution of SMBHs and spheroids.
145 - Ji-hoon Kim 2011
There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numerical framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto a MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full 3D adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2e11 Msun galactic halo and its 1e5 Msun embedded MBH at redshift 3 in a cosmological LCDM simulation. The MBH feedback heats the surrounding ISM up to 1e6 K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant, and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.
210 - L. Ciotti 2010
We find, from high-resolution hydro simulations, that winds from AGN effectively heat the inner parts (~100 pc) of elliptical galaxies, reducing infall to the central SMBH; and radiative (photoionization and X-ray) heating reduces cooling flows at the kpc scale. Including both types of feedback with (peak) efficiencies of 3 10^{-4} < epsilon_mech < 10^{-3} and of epsilon_rad ~10^{-1.3} respectively, produces systems having duty-cycles, central SMBH masses, X-ray luminosities, optical light profiles, and E+A spectra in accord with the broad suite of modern observations of massive elliptical systems. Our main conclusion is that mechanical feedback (including all three of energy, momentum and mass) is necessary but the efficiency, based on several independent arguments must be a factor of 10 lower than is commonly assumed. Bursts are frequent at z>1 and decline in frequency towards the present epoch as energy and metal rich gas are expelled from the galaxies into the surrounding medium. For a representative galaxy of final stellar mass ~3 10^{11} Msun, roughly 3 10^{10} Msun of recycled gas has been added to the ISM since z~2 and, of that, roughly 63% has been expelled from the galaxy, 19% has been converted into new metal rich stars in the central few hundred parsecs, and 2% has been added to the central SMBH, with the remaining 16% in the form hot X-ray emitting ISM. The bursts occupy a total time of ~170 Myr, which is roughly 1.4% of the available time. Of this time, the central SMBH would be seen as an UV or optical source for ~45% and ~71$% of the time, respectively. Restricting to the last 8.5 Gyr, the burst occupy ~44 Myr, corresponding to a fiducial duty-cycle of ~5 10^{-3}.
We develop a simple evolutionary scenario for the growth of supermassive black holes (BHs), assuming growth due to accretion only, to learn about the evolution of the BH mass function from $z=3$ to 0 and from it calculate the energy budgets of different modes of feedback. We tune the parameters of the model by matching the derived X-ray luminosity function (XLF) with the observed XLF of active galactic nuclei. We then calculate the amount of comoving kinetic and bolometric feedback as a function of redshift, derive a kinetic luminosity function and estimate the amount of kinetic feedback and $PdV$ work done by classical double Fanaroff-Riley II (FR II) radio sources. We also derive the radio luminosity function for FR IIs from our synthesized population and set constraints on jet duty cycles. Around 1/6 of the jet power from FR II sources goes into $PdV$ work done in the expanding lobes during the time the jet is on. Anti hierarchical growth of BHs is seen in our model due to addition of an amount of mass being accreted on to all BHs independent of the BH mass. The contribution to the total kinetic feedback by active galaxies in a low accretion, kinetically efficient mode is found to be the most significant at $z<1.5$. FR II feedback is found to be a significant mode of feedback above redshifts $zsim 1.5$, which has not been highlighted by previous studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا