Do you want to publish a course? Click here

On the formation of H-alpha line emission around classical T Tauri stars

74   0   0.0 ( 0 )
 Added by Ryuichi Kurosawa
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present radiative transfer models of the circumstellar environment of classical T Tauri stars, concentrating on the formation of the H-alpha emission. The wide variety of line profiles seen in observations are indicative of both inflow and outflow, and we therefore employ a circumstellar structure that includes both magnetospheric accretion and a disc wind. We perform systematic investigations of the model parameters for the wind and the magnetosphere to search for possible geometrical and physical conditions which lead to the types of profiles seen in observations. We find that the hybrid models can reproduce the wide range of profile types seen in observations, and that the most common profile types observed occupy a large volume of parameter space. Conversely, the most infrequently observed profile morphologies require a very specific set of models parameters. We find our model profiles are consistent with the canonical value of the mass-loss rate to mass-accretion rate ratio (mu=0.1) found in earlier magneto-hydrodynamic calculations and observations, but the models with 0.05<mu<0.2 are still in accord with observed H-alpha profiles. We investigate the wind contribution to the line profile as a function of model parameters, and examine the reliability of H-alpha as a mass accretion diagnostic. Finally, we examine the H-alpha spectroscopic classification used by Reipurth et. al, and discuss the basic physical conditions that are required to reproduce the profiles in each classified type.



rate research

Read More

We present observations of the T Tauri stars BP Tau, DG Tau, DI Tau, GM Aur, LkCa 15, RW Aur and V830 Tau, using long baseline infrared interferometry at K band (2.2 microns) from the Keck Interferometer. The target sources have a range of mass accretion rates and excess near-infrared emission. The interferometer is most sensitive to extended emission on characteristic size scales of 1 to 5 millarcseconds. All sources show evidence for resolved K band emission on these scales, although a few of the sources are marginally consistent with being unresolved. We calculate the infrared excess based on fitting stellar photosphere models to the optical photometry and estimate the physical size of the emission region using simple geometric models for the sources with a significant infrared excess. Assuming that the K band resolved emission traces the inner edge of the dust disk, we compare the measured characteristic sizes to predicted dust sublimation radii and find that the models require a range of dust sublimation temperatures and possibly optical depths within the inner rim to match the measured radii.
The study of contemporaneous variations of the continuum flux and emission lines is of great importance to understand the different astrophysical processes at work in T Tauri stars. In this paper we present the results of a simultaneous $BVRI$ and H$alpha$ photometric monitoring, contemporaneous to medium-resolution spectroscopy of six T Tauri stars in the Taurus-Auriga star forming region. We have characterized the H$alpha$ photometric system using synthetic templates and the contemporaneous spectra of the targets. We show that we can achieve a precision corresponding to 2$-$3 AA in the H$alpha$ equivalent width, in typical observing conditions. The spectral analysis has allowed us to determine the basic stellar parameters and the values of quantities related to the accretion. In particular, we have measured a significant veiling only for the three targets with the strongest H$alpha$ emission (T Tau, FM Tau, and DG Tau). The broad-band photometric variations are found to be in the range 0.05$-$0.70 mag and are often paired to variations in the H$alpha$ intensity, which becomes stronger when the stellar continuum is weaker. In addition, we have mostly observed a redder $V-I$ and a bluer $B-V$ color as the stars become fainter. For most of the targets, the timescales of these variations seem to be longer than the rotation period. One exception is T Tau, for which the broad-band photometry varies with the rotation period. The most plausible interpretation of these photometric and H$alpha$ variations is that they are due to non-stationary mass accretion onto the stars, but rotational modulation can play a major role in some cases.
262 - G. Aresu , I. Kamp , R. Meijerink 2010
Context: T Tauri stars have X-ray luminosities ranging from L_X = 10^28-10^32 erg/s. These luminosities are similar to UV luminosities (L_UV 10^30-10^31 erg/s) and therefore X-rays are expected to affect the physics and chemistry of the upper layers of their surrounding protoplanetary disks. Aim: The effects and importance of X-rays on the chemical and hydrostatic structure of protoplanetary disks are investigated, species tracing X-ray irradiation (for L_X >= 10^29 erg/s) are identified and predictions for [OI], [CII] and [NII] fine structure line fluxes are provided. Methods: We have implemented X-ray physics and chemistry into the chemo-physical disk code ProDiMo. We include Coulomb heating and H2 ionization as heating processes and primary and secondary ionization due to X-rays in the chemistry. Results: X-rays heat up the gas causing it to expand in the optically thin surface layers. Neutral molecular species are not much affected in their abundance and spatial distribution, but charged species such as N+, OH+, H2O+ and H3O+ show enhanced abundances in the disk surface. Conclusions: Coulomb heating by X-rays changes the vertical structure of the disk, yielding temperatures of ~ 8000 K out to distances of 50 AU. The chemical structure is altered by the high electron abundance in the gas in the disk surface, causing an efficient ion-molecule chemistry. The products of this, OH+, H2O+ and H3O+, are of great interest for observations of low-mass young stellar objects with the Herschel Space Observatory. [OI] (at 63 and 145 mic) and [CII] (at 158 mic) fine structure emission are only affected for L_X > 10^30 erg/s.
Aims: We search for PAH features towards T Tauri stars and compare them with surveys of Herbig Ae/Be stars. The presence and strength of the PAH features are interpreted with disk radiative transfer models exploring the PAH feature dependence on the incident UV radiation, PAH abundance and disk parameters. Methods: Spitzer Space Telescope 5-35 micron spectra of 54 pre-main sequence stars with disks were obtained, consisting of 38 T Tauri, 7 Herbig Ae/Be and 9 stars with unknown spectral type. Results: Compact PAH emission is detected towards at least 8 sources of which 5 are Herbig Ae/Be stars. The 11.2 micron PAH feature is detected in all of these sources, as is the 6.2 micron PAH feature where short wavelength data are available. However, the 7.7 and 8.6 micron features appear strongly in only 1 of these 4 sources. PAH emission is observed towards at least 3 T Tauri stars (8% detection rate). The lowest mass source with PAHs in our sample is T Cha (G8). All 4 sources in our sample with evidence for dust holes in their inner disk show PAH emission, increasing the feature/continuum ratio. Typical 11.2 micron line intensities are an order of magnitude lower than those observed for the more massive Herbig Ae/Be stars. Measured line fluxes indicate PAH abundances that are factors of 10-100 lower than standard interstellar values. Conversely, PAH features from disks exposed to stars with Teff<=4200K without enhanced UV are predicted to be below the current detection limit, even for high PAH abundances. Disk modeling shows that the 6.2 and 11.2 micron features are the best PAH tracers for T Tauri stars, whereas the 7.7 and 8.6 micron bands have low feature over continuum ratios due to the strongly rising silicate emission.
The mechanism for jet formation in the disks of T Tauri stars is poorly understood. Observational benchmarks to launching models can be provided by tracing the physical properties of the kinematic components of the wind and jet in the inner 100 au of the disk surface. In the framework of the GHOsT (GIARPS High-resolution Observations of T Tauri stars) project, we aim to perform a multi-line analysis of the velocity components of the gas in the jet acceleration zone. We analyzed the GIARPS-TNG spectra of six objects in the Taurus-Auriga complex (RY Tau, DG Tau, DL Tau, HN Tau, DO Tau, RW Aur A). Thanks to the combined high-spectral resolution (R=50000-115000) and wide spectral coverage (~400-2400 nm) we observed several O, S+, N, N+, and Fe+ forbidden lines spanning a large range of excitation and ionization conditions. In four objects (DG Tau, HN Tau, DO Tau, RW Aur A), temperature (T_e), electron and total density (n_e, n_H), and fractional ionization (x_e) were derived as a function of velocity through an excitation and ionization model. The abundance of gaseous iron, X(Fe), a probe of the dust content in the jet, was derived in selected velocity channels. The physical parameters vary smoothly with velocity, suggesting a common origin for the different kinematic components. In DG Tau and HN Tau, T_e, x_e, and X(Fe) increase with velocity (roughly from 6000 K, 0.05, 10% X(Fe)_sun to 15000 K, 0.6, 90% X(Fe)_sun). This trend is in agreement with disk-wind models in which the jet is launched from regions of the disk at different radii. In DO Tau and RW Aur A, we infer x_e < 0.1, n_H ~10^6-7 cm^-3, and X(Fe) <~ X(Fe)_sun at all velocities. These findings are tentatively explained by the formation of these jets from dense regions inside the inner, gaseous disk, or as a consequence of their high degree of collimation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا