Do you want to publish a course? Click here

The Survey for Ionization in Neutral Gas Galaxies: I. Description and Initial Results

53   0   0.0 ( 0 )
 Added by Gerhardt Meurer
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce the Survey for Ionization in Neutral Gas Galaxies (SINGG), a census of star formation in HI-selected galaxies. The survey consists of H-alpha and R-band imaging of a sample of 468 galaxies selected from the HI Parkes All Sky Survey (HIPASS). The sample spans three decades in HI mass and is free of many of the biases that affect other star forming galaxy samples. We present the criteria for sample selection, list the entire sample, discuss our observational techniques, and describe the data reduction and calibration methods. This paper focuses on 93 SINGG targets whose observations have been fully reduced and analyzed to date. The majority of these show a single Emission Line Galaxy (ELG). We see multiple ELGs in 13 fields, with up to four ELGs in a single field. All of the targets in this sample are detected in H-alpha indicating that dormant (non-star forming) galaxies with M(HI) > ~3e7 M_sun are very rare. A database of the measured global properties of the ELGs is presented. The ELG sample spans four orders of magnitude in luminosity (H-alpha and R-band), and H-alpha surface brightness, nearly three orders of magnitude in R surface brightness and nearly two orders of magnitude in H-alpha equivalent width (EW). The surface brightness distribution of our sample is broader than that of the Sloan Digital Sky Survey spectroscopic sample, the (EW) distribution is broader than prism-selected samples, and the morphologies found include all common types of star forming galaxies (e.g. irregular, spiral, blue compact dwarf, starbursts, merging and colliding systems, and even residual star formation in S0 and Sa spirals). (abridged)



rate research

Read More

We present the initial results of a 40 night contiguous ground-based campaign of time series photometric observations of a 1.39 sq. deg field located within the NASA Kepler mission field of view. The goal of this pre-launch survey was to search for transiting extrasolar planets and to provide independent variability information of stellar sources. We have gathered a data set containing light curves of 54,687 stars from which we have created a statistical sub-sample of 13,786 stars between 14< r <18.5 and have statistically examined each light curve to test for variability. We present a summary of our preliminary photometric findings including the overall level and content of stellar variability in this portion of the Kepler field and give some examples of unusual variable stars found within. We present a preliminary catalog of 2,457 candidate variable stars, of which 776 show signs of periodicity. We also present three potential exoplanet candidates, all of which should be observable in detail by the Kepler mission.
We describe an ongoing search for pulsars and dispersed pulses of radio emission, such as those from rotating radio transients (RRATs) and fast radio bursts (FRBs), at 350 MHz using the Green Bank Telescope. With the Green Bank Ultimate Pulsar Processing Instrument, we record 100 MHz of bandwidth divided into 4,096 channels every 81.92 $mu s$. This survey will cover the entire sky visible to the Green Bank Telescope ($delta > -40^circ$, or 82% of the sky) and outside of the Galactic Plane will be sensitive enough to detect slow pulsars and low dispersion measure ($<$30 $mathrm{pc,cm^{-3}}$) millisecond pulsars (MSPs) with a 0.08 duty cycle down to 1.1 mJy. For pulsars with a spectral index of $-$1.6, we will be 2.5 times more sensitive than previous and ongoing surveys over much of our survey region. Here we describe the survey, the data analysis pipeline, initial discovery parameters for 62 pulsars, and timing solutions for 5 new pulsars. PSR J0214$+$5222 is an MSP in a long-period (512 days) orbit and has an optical counterpart identified in archival data. PSR J0636$+$5129 is an MSP in a very short-period (96 minutes) orbit with a very low mass companion (8 $M_mathrm{J}$). PSR J0645$+$5158 is an isolated MSP with a timing residual RMS of 500 ns and has been added to pulsar timing array experiments. PSR J1434$+$7257 is an isolated, intermediate-period pulsar that has been partially recycled. PSR J1816$+$4510 is an eclipsing MSP in a short-period orbit (8.7 hours) and may have recently completed its spin-up phase.
$Kepler$ revealed that roughly one-third of Sun-like stars host planets orbiting within 100 days and between the size of Earth and Neptune. How do these planets form, what are they made of, and do they represent a continuous population or multiple populations? To help address these questions, we began the Magellan-TESS Survey (MTS), which uses Magellan II/PFS to obtain radial velocity (RV) masses of 30 TESS-detected exoplanets and develops an analysis framework that connects observed planet distributions to underlying populations. In the past, small planet RV measurements have been challenging to obtain due to host star faintness and low RV semi-amplitudes, and challenging to interpret due to the potential biases in target selection and observation planning decisions. The MTS attempts to minimize these biases by focusing on bright TESS targets and employing a quantitative selection function and observing strategy. In this paper, we (1) describe our motivation and survey strategy, (2) present our first catalog of planet density constraints for 27 TESS Objects of Interest (TOIs; 22 in our population analysis sample, 12 that are members of the same systems), and (3) employ a hierarchical Bayesian model to produce preliminary constraints on the mass-radius (M-R) relation. We find that the biases causing previous M-R relations to predict fairly high masses at $1~R_oplus$ have been reduced. This work can inform more detailed studies of individual systems and offer a framework that can be applied to future RV surveys with the goal of population inferences.
57 - M.S. Oey 2007
We use the first data release from the SINGG H-alpha survey of HI-selected galaxies to study the quantitative behavior of the diffuse, warm ionized medium (WIM) across the range of properties represented by these 109 galaxies. The mean fraction f_WIM of diffuse ionized gas in this sample is 0.59+/- 0.19, slightly higher than found in previous samples. Since lower surface-brightness galaxies tend to have higher f_WIM, we believe that most of this difference is due to selection effects favoring large, optically-bright, nearby galaxies with high star-formation rates. As found in previous studies, there is no appreciable correlation with Hubble type or total star-formation rate. However, we find that starburst galaxies, defined here by an H-alpha surface brightness > 2.5x 10^39 erg s^-1 kpc^-2 within the H-alpha half-light radius, do show much lower fractions of diffuse H-alpha emission. The cause apparently is not dominated by a lower fraction of field OB stars. However, it is qualitatively consistent with an expected escape of ionizing radiation above a threshold star-formation rate, predicted from our model in which the ISM is shredded by pressure-driven supernova feedback. The HI gas fractions in the starburst galaxies are also lower, suggesting that the starbursts are consuming and ionizing all the gas, and thus promoting regions of density-bounded ionization. If true, these effects imply that some amount of Lyman continuum radiation is escaping from most starburst galaxies, and that WIM properties and outflows from mechanical feedback are likely to be pressure-driven. However, in view of previous studies showing that the escape fraction of ionizing radiation is generally low, it is likely that other factors also drive the low fractions of diffuse ionized gas in starbursts.
We present an overview of, and first science results from, the Magellanic Edges Survey (MagES), an ongoing spectroscopic survey mapping the kinematics of red clump and red giant branch stars in the highly substructured periphery of the Magellanic Clouds. In conjunction with Gaia astrometry, MagES yields a sample of ~7000 stars with individual 3D velocities that probes larger galactocentric radii than most previous studies. We outline our target selection, observation strategy, data reduction and analysis procedures, and present results for two fields in the northern outskirts ($>10^{circ}$ on-sky from the centre) of the Large Magellanic Cloud (LMC). One field, located in the vicinity of an arm-like overdensity, displays apparent signatures of perturbation away from an equilibrium disk model. This includes a large radial velocity dispersion in the LMC disk plane, and an asymmetric line-of-sight velocity distribution indicative of motions vertically out of the disk plane for some stars. The second field reveals 3D kinematics consistent with an equilibrium disk, and yields $V_{text{circ}}=87.7pm8.0$km s$^{-1}$ at a radial distance of ~10.5kpc from the LMC centre. This leads to an enclosed mass estimate for the LMC at this radius of $(1.8pm0.3)times10^{10}text{M}_{odot}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا