Do you want to publish a course? Click here

Dynamics of the NGC 4636 Globular Cluster System - An extremely dark matter dominated galaxy?

213   0   0.0 ( 0 )
 Added by Ylva Schuberth
 Publication date 2006
  fields Physics
and research's language is English
 Authors Y. Schuberth




Ask ChatGPT about the research

We present the first dynamical study of the globular cluster system of NGC 4636. This giant elliptical galaxy is claimed to be extremely dark matter dominated, according to X-ray observations. Using the VLT with FORS2/MXU, we obtained velocities for 174 globular clusters. The clusters have projected galactocentric distances in the range 4 to 70 kpc, the overwhelming majority lie within 30 kpc. We find some indication for a rotation of the red (metal-rich) clusters about the minor axis. Out to a radius of 30 kpc, we find a roughly constant projected velocity dispersion for the blue clusters of ~200 km/s. The red clusters exhibit a distinctly different behavior: at a radius of about 13 kpc, the velocity dispersion drops by ~50 km/s to about 170 km/s which then remains constant out to a radius of 30 kpc. Using only the blue clusters as dynamical tracers, we perform Jeans-analyses for different assumptions of the orbital anisotropy. Depending on the anisotropy and the adopted M/L-values, we find that the dark matter fraction within one effective radius can vary between 20% and 50% with most a probable range between 20% and 30%. A main source of uncertainty is the ambiguity of the velocity dispersion in the outermost bin. Although the dark halo mass still cannot be strongly constrained, NGC 4636 does not seem to be extremely dark matter dominated. The derived circular velocities are also consistent with Modified Newtonian Dynamics.



rate research

Read More

We present a kinematic analysis of the globular cluster(GC) system in the giant elliptical galaxy (gE) NGC 4636 in the Virgo cluster. Using the photometric and spectroscopic database of 238 GCs, we have investigated the kinematics of the GC system. The NGC 4636 GC system shows weak overall rotation, which is dominated by the red GCs. However, both the blue GCs and red GCs show some rotation in the inner region at R<4.3. The velocity dispersion for all the GCs is derived to be sigma_p = 225{+12-9} km/s. The velocity dispersion for the blue GCs (sig=251 km/s) is slightly larger than that for the red GCs (sig=205 km/s). The velocity dispersions for the blue GCs about the mean velocity and about the best fit rotation curve have a significant variation depending on the galactocentric radius. Comparison of observed stellar and GC velocity dispersion profiles with the velocity dispersion profiles calculated from the stellar mass profile shows that the mass-to-light ratio should increase as the galactocentric distance increases, indicating the existence of an extended dark matter halo. From the comparison of the observed GC velocity dispersion profiles and the velocity dispersion profiles calculated for the X-ray mass profiles in the literature, we find that the orbit of the GC system is tangential, and that the orbit of the red GCs is slightly more tangential than that of the blue GCs. We compare the GC kinematics of NGC 4636 with those of other six gEs, finding that the kinematic properties of the GCs are diverse among gEs. We find several correlations between the kinematics of the GCs and the global parameters of their host galaxies. We discuss the implication of the results for the formation models of the GC system in gEs, and suggest a mixture scenario for the origin of the GCs in gEs.
We present new radial velocities for 289 globular clusters around NGC 4636, the southernmost giant elliptical galaxy of the Virgo cluster. The data were obtained with FORS2/MXU at the Very Large Telescope. Together with data analysed in an earlier study (Schuberth et al. 2006), we now have a sample of 460 globular cluster velocities out to a radius of 12 arcmin (60 kpc) available - one of the largest of its kind. This new data set also provides a much more complete angular coverage. Moreover, we present new kinematical data of the inner stellar population of NGC 4636. We perform an updated Jeans analysis, using both stellar and GC data, to better constrain the dark halo properties. We find a stellar M/L-ratio of 5.8 in the R-band, higher than expected from single stellar population synthesis. We model the dark halo by cored and cuspy analytical halo profiles and consider different anisotropies for the tracer populations. Properties of NFW halos lie well within the expected range of cosmological simulations. Cored halos give central dark matter densities, which are typical for elliptical galaxies of NGC 4636s luminosity. The surface densities of the dark matter halos are higher than those of spiral galaxies. We compare the predictions of Modified Newtonian Dynamics with the derived halo properties and find satisfactory agreement. Therefore NGC 4636 therefore falls onto the baryonic Tully-Fisher relation for spiral galaxies. The comparison with the X-ray mass profile of Johnson et al. (2009) reveals satisfactory agreement only, if the abundance gradient of hot plasma has been taken into account. This might indicate a general bias towards higher masses for X-ray based mass profiles in all systems, including galaxy clusters, with strong abundance gradients.
We present a spectroscopic study of the globular clusters (GCs) in the giant elliptical galaxy NGC 4636 in the Virgo cluster. We selected target GC candidates using the Washington photometry derived from the deep CCD images taken at the KPNO 4m. Then we obtained the spectra of 164 target objects in the field of NGC 4636 using the Multi-Object Spectroscopy (MOS) mode of Faint Object Camera and Spectrograph (FOCAS) on the SUBARU 8.2m Telescope. We have measured the velocities for 122 objects: 105 GCs in NGC 4636, the nucleus of NGC 4636, 11 foreground stars, 2 background galaxies, and 3 probable intracluster GCs in the Virgo cluster. The GCs in NGC 4636 are located in the projected galactocentric radius within 10arcmin (corresponding to 43 kpc). The measured velocities for the GCs range from 300km/s to 1600km/s, with a mean value of 932_{-22}^{+25} km/s, which is in good agreement with the velocity for the nucleus of NGC 4636, 928pm 45 km/s. The velocity dispersion of the GCs in NGC 4636 is derived to be 231_{-17}^{+15} km/s and the velocity dispersion of the blue GCs is slightly larger than that of the red GCs. Combining our results with data in the literature, we produce a master catalog of radial velocities for 238 GCs in NGC 4636. The velocity dispersion of the GCs in the master catalog is found to be 225_{-9}^{+12} km/s for the entire sample, 251_{-12}^{+18} km/s for 108 blue GCs, and 205_{-13}^{+11} km/s for 130 red GCs.
This paper presents further results from our spectroscopic study of the globular cluster (GC) system of the group elliptical NGC 3923. From observations made with the GMOS instrument on the Gemini South telescope, an additional 50 GC and Ultra Compact Dwarf (UCD) candidates have been spectroscopically confirmed as members of the NGC 3923 system. When the recessional velocities of these GCs are combined with the 29 GC velocities reported previously, a total sample of 79 GC/UCD velocities is produced. This sample extends to over 6 arcmin (>6 Re sim30 kpc) from the centre of NGC 3923, and is used to study the dynamics of the GC system and the dark matter content of NGC 3923. It is found that the GC system of NGC 3923 displays no appreciable rotation, and that the projected velocity dispersion is constant with radius within the uncertainties. The velocity dispersion profiles of the integrated light and GC system of NGC 3923 are indistinguishable over the region in which they overlap. We find some evidence that the diffuse light and GCs of NGC 3923 have radially biased orbits within sim130. The application of axisymmetric orbit-based models to the GC and integrated light velocity dispersion profiles demonstrates that a significant increase in the mass-to-light ratio (from M/Lv = 8 to 26) at large galactocentric radii is required to explain these observations. We therefore confirm the presence of a dark matter halo in NGC 3923. We find that dark matter comprises 17.5% of the mass within 1 Re, 41.2% within 2 Re, and 75.6% within the radius of our last kinematic tracer at 6.9 Re. The total dynamical mass within this radius is found to be 1.5 x 10^12 solar masses. In common with other studies of large ellipticals, we find that our derived dynamical mass profile is consistently higher than that derived by X-ray observations, by a factor of around 2.
71 - T. Bridges 2006
From observations with the GMOS multi-slit spectrograph on the Gemini North telescope, we have obtained spectra for 39 globular cluster candidates in the Virgo giant elliptical galaxy NGC 4649 (M60), of which 38 are confirmed globular clusters. The clusters extend out to a radius of 260 (3.5 effective radii). We find no rotation of the globular cluster system, with an upper limit of v/sigma < 0.6 at a confidence level of 95%. The globular cluster velocity dispersion is constant with radius, within the uncertainties. We fit isotropic models to the globular cluster and stellar kinematics; these models yield a M/L_V around 16 at 200 radius (16 kpc), an increase of a factor of two from the central M/L. We also use the mass profile as derived from X-rays to determine the orbital structure. Using axisymmetric orbit-based models and the X-ray mass profile, we find the orbital distribution is close to isotropic within 100, and becomes tangentially biased beyond. Furthermore, when using the X-ray profile, we find a better fit to the kinematics compared to using a constant M/L model. Thus, both isotropic and axisymmetric orbit-based models give support for the presence of a dark matter halo in NGC 4649.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا