Do you want to publish a course? Click here

SNe feedback and the formation of elliptical galaxies

52   0   0.0 ( 0 )
 Added by Antonio Pipino
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The processes governing both the formation and evolution of elliptical galaxies are discussed by means of a new multi-zone photo-chemical evolution model for elliptical galaxies, taking into account detailed nucleosynthetic yields, feedback from supernovae, Pop III stars and an initial infall episode. By comparing model predictions with observations, we derive a picture of galaxy formation in which the higher is the mass of the galaxy, the shorter are the infall and the star formation timescales. In particular, by means of our model, we are able to reproduce the overabundance of Mg relative to Fe, observed in the nuclei of bright ellipticals, and its increase with galactic mass. This is a clear sign of an anti-hierarchical formation process. Therefore, in this scenario, the most massive objects are older than the less massive ones, in the sense that larger galaxies stop forming stars at earlier times. Each galaxy is created outside-in, i.e. the outermost regions accrete gas, form stars and develop a galactic wind very quickly, compared to the central core in which the star formation can last up to ~1.3 Gyr. This finding will be discussed at the light of recent observations of the galaxy NGC 4697 which clearly show a strong radial gradient in the mean stellar [<Mg/Fe>] ratio. The role of galactic winds in the IGM/ICM enrichment will also be discussed.



rate research

Read More

261 - Antonio Pipino 2005
In this paper we compare the predictions of a detailed multi-zone chemical evolution model for elliptical galaxies with the very recent observations of the galaxy NGC 4697. As a consequence of the earlier development of the wind in the outer regions with respect to the inner ones, we predict an increase of the mean stellar [<Mg/Fe>] ratio with radius, in very good agreement with the data for NGC4697. This finding strongly supports the proposed outside-in formation scenario for ellipticals. We show that, in spite of the good agreement found for the [<Mg/Fe>] ratio, the predicted slope of the mass-weighted metallicity gradient does not reproduce the one derived from observations, once a calibration to convert indices into abundances is applied. This is explained as the consequence of the different behaviour with metallicity of the line-strength indices as predicted by a Single Stellar Population (SSP) and those derived by averaging over a Composite Stellar Population (CSP). In order to better address this issue, we calculate the theoretical ``G-dwarf distributions of stars as functions of both metallicity ([Z/H]) and [Fe/H], showing that they are broad and asymmetric that a SSP cannot correctly mimick the mixture of stellar populations at any given radius. We find that these distributions differ from the ``G-dwarf distributions especially at large radii,except for the one as a function of [Mg/Fe]. Therefore, we conclude that in ellipticals the [Mg/Fe] ratio is the most reliable quantity to be compared with observations and is the best estimator of the star formation timescale at each radius.(abridged)
In order to investigate the formation mechanisms of the rare compact elliptical galaxies (cE) we have compiled a sample of 25 cEs with good SDSS spectra, covering a range of stellar masses, sizes and environments. They have been visually classified according to the interaction with their host, representing different evolutionary stages. We have included clearly disrupted galaxies, galaxies that despite not showing signs of interaction are located close to a massive neighbor (thus are good candidates for a stripping process), and cEs with no host nearby. For the latter, tidal stripping is less likely to have happened and instead they could simply represent the very low-mass, faint end of the ellipticals. We study a set of properties (structural parameters, stellar populations, star formation histories and mass ratios) that can be used to discriminate between an intrinsic or stripped origin. We find that one diagnostic tool alone is inconclusive for the majority of objects. However, if we combine all the tools a clear picture emerges. The most plausible origin, as well as the evolutionary stage and progenitor type, can be then determined. Our results favor the stripping mechanism for those galaxies in groups and clusters that have a plausible host nearby, but favors an intrinsic origin for those rare cEs without a plausible host and that are located in looser environments.
Eridanus II (EriII) is an ultra-faint dwarf (UFD) galaxy (M_V=-7.1) located at a distance close to the Milky Way virial radius. Early shallow color-magnitude diagrams (CMD) indicated that it possibly hosted an intermediate-age or even young stellar population, which is unusual for a galaxy of this mass. In this paper, we present new ACS/HST CMDs reaching the oldest main sequence turnoff with excellent photometric precision, and derive a precise star formation history (SFH) for this galaxy through CMD-fitting. This SFH shows that the bulk of the stellar mass in Eri II formed in an extremely short star formation burst at the earliest possible time. The derived star formation rate profile has a width at half maximum of 500 Myr and reaches a value compatible with null star formation 13 Gyr ago. However, tests with mock stellar populations and with the CMD of the globular cluster M92 indicate that the star formation period could be shorter than 100 Myr. From the quantitative determination of the amount of mass turned into stars in this early star formation burst (~2x10^5 Msun) we infer the number of SNe events and the corresponding energy injected into the interstellar medium. For reasonable estimates of the EriII virial mass and values of the coupling efficiency of the SNe energy, we conclude that EriII could be quenched by SNe feedback alone, thus casting doubts on the need to invoke cosmic reionization as the preferred explanation for the early quenching of old UFD galaxies.
127 - Giuseppe Murante 2010
We present a new multi-phase sub-resolution model for star formation and feedback in SPH numerical simulations of galaxy formation. Our model, called MUPPI (MUlti-Phase Particle Integrator), describes each gas particle as a multi-phase system, with cold and hot gas phases, coexisting in pressure equilibrium, and a stellar component. Cooling of the hot tenuous gas phase feeds the cold gas phase. Stars are formed out of molecular gas with a given efficiency, which scales with the dynamical time of the cold phase. Our prescription for star formation is not based on imposing the Schmidt-Kennicutt relation, which is instead naturally produced by MUPPI. Energy from supernova explosions is deposited partly into the hot phase of the gas particles, and partly to that of neighboring particles. Mass and energy flows among the different phases of each particle are described by a set of ordinary differential equations which we explicitly integrate for each gas particle, instead of relying on equilibrium solutions. This system of equations also includes the response of the multi-phase structure to energy changes associated to the thermodynamics of the gas. We apply our model to two isolated disk galaxy simulations and two spherical cooling flows. MUPPI is able to reproduce the Schmidt-Kennicutt relation for disc galaxies. It also reproduces the basic properties of the inter-stellar medium in disc galaxies, the surface densities of cold and molecular gas, of stars and of star formation rate, the vertical velocity dispersion of cold clouds and the flows connected to the galactic fountains. Quite remarkably, MUPPI also provides efficient stellar feedback without the need to include a scheme of kinetic energy feedback. [abridged]
139 - Yu-Ting Wu ASIAA , Taiwan 2015
N-body simulations of galactic collisions are employed to investigate the formation of elliptical rings in disk galaxies. The relative inclination between disk and dwarf galaxies is studied with a fine step of five degrees. It is confirmed that the eccentricity of elliptical ring is linearly proportional to the inclination angle. Deriving from the simulational results, an analytic formula which expresses the eccentricity as a function of time and inclination angle is obtained. This formula shall be useful for the interpretations of the observations of ring systems, and therefore reveals the merging histories of galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا