[Abridged] We present a large, new set of stellar evolution models and isochrones for an alpha-enhanced metal distribution typical of Galactic halo and bulge stars; it represents a homogeneous extension of our stellar model library for a distribution already presented in Pietrinferni et al.(2004). The effect of the alpha-element enhancement has been properly taken into account in the nuclear network, opacity, equation of state and, for the first time, the bolometric corrections, and color transformations. This allows us to avoid the inconsistent use - common to all alpha-enhanced model libraries currently available - of scaled-solar bolometric corrections and color transformations for alpha-enhanced models and isochrones. We show how bolometric corrections to magnitudes obtained for the U,B portion of stellar spectra for T_{eff}<=6500K, are significantly affected by the metal mixture, especially at the higher metallicities. We also provide complete sets of evolutionary models for low-mass, He-burning stellar structures covering the whole metallicity range, to enable synthetic horizontal branch simulations. We compare our database with several widely used stellar model libraries from different authors, as well as with various observed color magnitude and color-color diagrams (Johnson-Cousins BVI and near infrared magnitudes, Stromgren colors) of Galactic field stars and globular clusters. We also test our isochrones comparing integrated optical colors and Surface Brightness Fluctuation magnitudes with selected globular cluster data. We find a general satisfactory agreement with the empirical constraints.