No Arabic abstract
In this study we test the possibility that the asymmetry in the profiles of the H-alpha and Ca II K lines in red giant stars is due to the presence of an active chromosphere rather than to mass loss. To this end, we compare line profiles computed using relevant model chromospheres to profiles of the H-alpha and Ca II K lines observed in five red giant stars of the globular cluster NGC 2808. The spectra were taken with FLAMES during Science Verification, using the UVES mode at high resolution (R=43,000) for the H-alpha line, and GIRAFFE in MEDUSA mode (R=20,000) for the Ca II K line. We find that the observed profiles are better described if a negative (outward) velocity field is included in the model chromospheres. This leads to mass loss rates of a few 10**(-9) solar masses per year, very close to the requirements of the stellar evolution theory.
We aim to (1) set up simple and general analytical expressions to estimate mass-loss rates of evolved stars, and (2) from those calculate estimates for the mass-loss rates of asymptotic giant branch (AGB), red supergiant (RSG), and yellow hypergiant stars in our galactic sample. Rotationally excited lines of CO are a very robust diagnostic in the study of circumstellar envelopes (CSEs). When sampling different layers of the CSE, observations of these molecular lines lead to detailed profiles of kinetic temperature, expansion velocity, and density. A state-of-the-art, nonlocal thermal equilibrium, and co-moving frame radiative transfer code that predicts CO line intensities in the CSEs of late-type stars is used in deriving relations between stellar and molecular-line parameters, on the one hand, and mass-loss rate, on the other. We present analytical expressions for estimating the mass-loss rates of evolved stellar objects for 8 rotational transitions of the CO molecule, apply them to our extensive CO data set covering 47 stars, and compare our results to those of previous studies. Our expressions account for line saturation and resolving of the envelope, thereby allowing accurate determination of very high mass-loss rates. We argue that, for estimates based on a single rotational line, the CO(2-1) transition provides the most reliable mass-loss rate. The mass-loss rates calculated for the AGB stars range from 4x10^-8 Msun/yr up to 8x10^-5 Msun/yr. For RSGs they reach values between 2x10^-7 Msun/yr and 3x10^-4 Msun/yr. The estimates for the set of CO transitions allow time variability to be identified in the mass-loss rate. Possible mass-loss-rate variability is traced for 7 of the sample stars. We find a clear relation between the pulsation periods of the AGB stars and their derived mass-loss rates, with a levelling off at approx. 3x10^-5 Msun/yr for periods exceeding 850 days.
We analyze the H-alpha spectral variability of the rapidly-rotating K1-dwarf LQ Hya using high-resolution H-alpha spectra recorded during April-May 2000. Chromospheric parameters were computed from the H-alpha profile as a function of rotational phase. We find that all these parameters vary in phase, with a higher chromospheric electron density coinciding with the maximum H-alpha emission. We find a clear rotational modulation of the H-alpha emission that is better emphasized by subtracting a reference photospheric template built up with a spectrum of a non-active star of the same spectral type. A geometrical plage model applied to the H-alpha variation curve allows us to derive the location of the active regions that come out to be close in longitude to the most pronounced photospheric spots found with Doppler imaging applied to the photospheric lines in the same spectra. Our analysis suggests that the H-alpha features observed in LQ Hya in 2000 are a scaled-up version of the solar plages as regards dimensions and/or flux contrast. No clear indication of chromospheric mass motions emerges.
We quantitatively investigate the extent of wind absorption signatures in the X-ray grating spectra of all non-magnetic, effectively single O stars in the Chandra archive via line profile fitting. Under the usual assumption of a spherically symmetric wind with embedded shocks, we confirm previous claims that some objects show little or no wind absorption. However, many other objects do show asymmetric and blue shifted line profiles, indicative of wind absorption. For these stars, we are able to derive wind mass-loss rates from the ensemble of line profiles, and find values lower by an average factor of 3 than those predicted by current theoretical models, and consistent with H-alpha if clumping factors of f_cl ~ 20 are assumed. The same profile fitting indicates an onset radius of X-rays typically at r ~ 1.5 R_star, and terminal velocities for the X-ray emitting wind component that are consistent with that of the bulk wind. We explore the likelihood that the stars in the sample that do not show significant wind absorption signatures in their line profiles have at least some X-ray emission that arises from colliding wind shocks with a close binary companion. The one clear exception is zeta Oph, a weak-wind star that appears to simply have a very low mass-loss rate. We also reanalyse the results from the canonical O supergiant zeta Pup, using a solar-metallicity wind opacity model and find Mdot = 1.8 times 10^{-6} M_sun/yr, consistent with recent multi-wavelength determinations.
It is important to properly describe the mass-loss rate of AGB stars, in order to understand their evolution from the AGB to PN phase. The primary goal of this study is to investigate the influence of metallicity on the mass-loss rate, under well determined luminosities. The luminosity of the star is a crucial parameter for the radiative driven stellar wind. Many efforts have been invested to constrain the AGB mass-loss rate, but most of the previous studies use Galactic objects, which have poorly known distances, thus their luminosities. To overcome this problem, we have studied mass loss from AGB stars in the Galaxies of the Local Group. The distance to the stars have been independently measured, thus AGB stars in these galaxies are ideal for understanding the mass-loss rate. Moreover, these galaxies have a lower metallicity than the Milky Way, providing an ideal target to study the influence of metallicity on the mass-loss rate. We report our analysis of mass loss, using the Spitzer Space Telescope and the Herschel Space Observatory. We will discuss the influence of AGB mass-loss on stellar evolution, and explore AGB and PN contribution to the lifecycle of matter in galaxies.
We fit every emission line in the high-resolution Chandra grating spectrum of zeta Pup with an empirical line profile model that accounts for the effects of Doppler broadening and attenuation by the bulk wind. For each of sixteen lines or line complexes that can be reliably measured, we determine a best-fitting fiducial optical depth, tau_* = kappa*Mdot/4{pi}R_{ast}v_{infty}, and place confidence limits on this parameter. These sixteen lines include seven that have not previously been reported on in the literature. The extended wavelength range of these lines allows us to infer, for the first time, a clear increase in tau_* with line wavelength, as expected from the wavelength increase of bound-free absorption opacity. The small overall values of tau_*, reflected in the rather modest asymmetry in the line profiles, can moreover all be fit simultaneously by simply assuming a moderate mass-loss rate of 3.5 pm 0.3 times 10^{-6} Msun/yr, without any need to invoke porosity effects in the wind. The quoted uncertainty is statistical, but the largest source of uncertainty in the derived mass-loss rate is due to the uncertainty in the elemental abundances of zeta Pup, which affects the continuum opacity of the wind, and which we estimate to be a factor of two. Even so, the mass-loss rate we find is significantly below the most recent smooth-wind H-alpha mass-loss rate determinations for zeta Pup, but is in line with newer determinations that account for small-scale wind clumping. If zeta Pup is representative of other massive stars, these results will have important implications for stellar and galactic evolution.