No Arabic abstract
Vega, the second brightest star in the northern hemisphere, serves as a primary spectral type standard. While its spectrum is dominated by broad hydrogen lines, the narrower lines of the heavy elements suggested slow to moderate rotation, giving confidence that the ground-based calibration of its visibile spectrum could be safely extrapolated into the ultraviolet and near-infrared (through atmosphere models), where it also serves as the primary photometric calibrator. But there have been problems: the star is too bright compared to its peers and it has unusually shaped absorption line profiles, leading some to suggest that it is a distorted, rapidly rotating star seen pole-on. Here we report optical interferometric observations of Vega which detect the asymmetric brightness distribution of the bright, slightly offset polar axis of a star rotating at 93% of breakup speed. In addition to explaining the unusual brightness and line shape pecularities, this result leads to the prediction of an excess of near-infrared emission compared to the visible, in agreement with observations. The large temperature differences predicted across its surface call into question composition determinations, adding uncertainty to Vegas age and opening the possibility that its debris disk could be substantially older than previously thought.
Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In the present paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, $tau_c$. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 $M_odot$ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value $tau_c simeq 5 times 10^5$ years. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being $sim 0.1-1%$ of the total core collapses, depending on the common envelope efficiency.
The radio spectra of main-sequence stars remain largely unconstrained due to the lack of observational data to inform stellar atmosphere models. As such, the dominant emission mechanisms at long wavelengths, how they vary with spectral type, and how much they contribute to the expected brightness at a given radio wavelength are still relatively unknown for most spectral types. We present radio continuum observations of Altair, a rapidly rotating A-type star. We observed Altair with NOEMA in 2018 and 2019 at 1.34 mm, 2.09 mm, and 3.22 mm and with the VLA in 2019 at 6.7 mm and 9.1 mm. In the radio spectra, we see a brightness temperature minimum at millimeter wavelengths followed by a steep rise to temperatures larger than the optical photosphere, behavior that is unexpected for A-type stars. We use these data to produce the first sub-millimeter to centimeter spectrum of a rapidly rotating A-type star informed by observations. We generated both PHOENIX and KINICH-PAKAL model atmospheres and determine the KINICH-PAKAL model better reproduces Altairs radio spectrum. The synthetic spectrum shows a millimeter brightness temperature minimum followed by significant emission over that of the photosphere at centimeter wavelengths. Together, these data and models show how the radio spectrum of an A-type star can reveal the presence of a chromosphere, likely induced by rapid rotation, and that a Rayleigh Jeans extrapolation of the stellar photosphere is not an adequate representation of a stars radio spectrum.
Stellar rotation is a key in our understanding of both mass-loss and evolution of intermediate and massive stars. It can lead to anisotropic mass-loss in the form of radiative wind or an excretion disk. We wished to spatially resolve the photosphere and gaseous environment of 51 Oph, a peculiar star with a very high vsin(i) of 267km s$^{-1}$ and an evolutionary status that remains unsettled. It has been classified by different authors as a Herbig, a $beta$ Pic, or a classical Be star. We used the VEGA visible beam combiner installed on the CHARA array that reaches a submilliarcsecond resolution. Observation were centered on the H$alpha$ emission line. We derived, for the first time, the extension and flattening of 51 Oph photosphere. We found a major axis of $theta_{{mathrm{eq}}}$=8.08$pm$0.70$R_odot$ and a minor axis of $theta_{{mathrm{pol}}}$=5.66$pm$0.23$R_odot$ . This high photosphere distortion shows that the star is rotating close to its critical velocity. Finally, using spectro-interferometric measurements in the H$ alpha$ line, we constrained the circumstellar environment geometry and kinematics and showed that the emission is produced in a 5.2$pm$2R$_{*}$ disk in Keplerian rotation. From the visible point of view, 51 Oph presents all the features of a classical Be star: near critical-rotation and double-peaked H$alpha $ line in emission produced in a gaseous disk in Keplerian rotation. However, this does not explain the presence of dust as seen in the mid-infrared and millimeter spectra, and the evolutionary status of 51 Oph remains unsettled.
This article reviews developments in the theory of rapidly rotating degenerate atomic gases. The main focus is on the equilibrium properties of a single component atomic Bose gas, which (at least at rest) forms a Bose-Einstein condensate. Rotation leads to the formation of quantized vortices which order into a vortex array, in close analogy with the behaviour of superfluid helium. Under conditions of rapid rotation, when the vortex density becomes large, atomic Bose gases offer the possibility to explore the physics of quantized vortices in novel parameter regimes. First, there is an interesting regime in which the vortices become sufficiently dense that their cores -- as set by the healing length -- start to overlap. In this regime, the theoretical description simplifies, allowing a reduction to single particle states in the lowest Landau level. Second, one can envisage entering a regime of very high vortex density, when the number of vortices becomes comparable to the number of particles in the gas. In this regime, theory predicts the appearance of a series of strongly correlated phases, which can be viewed as {it bosoni
Using archival spectroscopic and photometric data, we searched for massive stars with Balmer-emission consistent with magnetically confined circumstellar material. HR 7355 is a formerly unknown He-strong star showing Balmer emission. At V=6.02 mag, it is one of the brightest objects simultaneously showing anomalous helium absorption and hydrogen emission. Among similar objects, only sigma Ori E has so far been subjected to any systematic analysis of the circumstellar material responsible for the emission. We argue that the double-wave photometric period of 0.52d corresponds to the rotation period. In tandem with the high projected equatorial velocity, v sin i=320 km/s, this short period suggests that HR 7355 is the most rapidly rotating He-strong star known to date; a class that was hitherto expected to host stars with slow to moderate rotation only.