X-ray spectral properties of high-redshift radio-loud quasars beyond redshift 4--first results


Abstract in English

(abridged) We firstly present the results of X-ray spectroscopic observations with XMM-Newton for four high-redshift radio-loud quasars at z>4. These observations more than double the number of z>4 radio-loud quasars having X-ray spectroscopic data to seven, which compose a significant subset of a flux-limited sample of z>4 radio-loud quasars. Based on this subset we show some preliminary results on the overall X-ray spectral properties of the sample. Soft X-ray spectral flattening, which is thought to arise from intrinsic X-ray absorption, was found in about half of the sample. We give a preliminary distribution of the absorption column density NH. For those with detected X-ray absorption, the derived NH values fall into a very narrow range (around a few times 10^(22)cm^(-2) for `cold absorption), suggesting a possible common origin of the absorber. Compared to lower-redshift samples at z<2, there is an extension, or a systematic shift, toward higher values in the intrinsic NH distribution at z>4, and an increase of the fraction of radio-loud quasars showing X-ray absorption toward high redshifts. These results indicate a cosmic evolution effect, which seems to be the strongest at redshifts around 2. The rest frame 1-50keV continua have photon indices with a mean of 1.64 and a standard deviation of 0.11. Variability appears to be common on timescales from a few months to years in the quasar rest-frame, sometimes in both fluxes and spectral slopes.

Download