Do you want to publish a course? Click here

VLA Observations of Carbon 91$alpha$ Recombination Line Emission in W49 North

77   0   0.0 ( 0 )
 Added by D. Anish Roshi
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have detected C91$alpha$ (8.5891 GHz) emission toward 4 ultra-compact HII regions (UCHII s; W49G, J, L & C) in the W49 North massive star forming region with the Very Large Array (VLA) at 3arcsec resolution. No carbon line emission was detected toward UCHII s W49F, A, O, S and Q at this frequency to a 3$sigma$ level of 2 mJy. We also observed the same region in the C75$alpha$ line (15.3 GHz) with no detection at a 3$sigma$ level of 6 mJy with a 1arcsec.7 beam. Detection of line emission toward these sources add supporting data to the earlier result of ocite{retal05a}Roshi et al (2005a) that many UCHII s have an associated photo-dissociation region (PDR). Similarity of the LSR velocities of carbon recombination lines and H$_2$CO absorption toward UCHII s in W49 North suggests that the PDRs reside in the dense interface zone surrounding these HII regions. Combining the observed carbon line parameters at 8.6 GHz with the upper limits on line emission at 15.3 GHz, we obtain constraints on the physical properties of the PDRs associated with W49G and J. The upper limit on the number density of hydrogen molecule obtained from carbon line models is $sim$ $5 times 10^6$ cmthree.



rate research

Read More

We present high angular resolution (0.7) observations made with the Very Large Array (VLA) of the radio recombination line (RRL) H53alpha and radio continuum emission at 43 GHz from the ultraluminous infrared galaxy (ULIRG) Arp 220. The 43 GHz continuum emission shows a compact structure (~2) with two peaks separated by ~1, the East (E) and West (W) components, that correspond to each galactic nucleus of the merger. The spectral indices for both the E and W components, using radio continuum images at 8.3 and 43 GHz are typical of synchrotron emission (alpha ~ -1.0). Our 43 GHz continuum and H53alpha line observations confirm the flux densities predicted by the models proposed by Anantharamaiah et al. This agreement with the models implies the presence of high-density (~ 100,000 cm^-3) compact HII regions (~ 0.1 pc) in Arp 220. The integrated H53alpha line emission is stronger toward the non-thermal radio continuum peaks, which are also coincident with the peaks of molecular emission of the H2CO. The coincidence between the integrated H53alpha and the H2CO maser line emission suggests that the recent star forming regions, traced by the high density gas, are located mainly in regions that are close to the two radio continuum peaks. A velocity gradient of ~ 0.30 km/s/pc in the H53alpha RRL is observed toward the E component and a second velocity gradient of ~ 0.15 km/s/pc is detected toward the W component. The orientations of these velocity gradients are in agreement with previous CO, HI and OH observations. The kinematics of the high-density ionized gas traced by the H53alpha line are consistent with two counter rotating disks as suggested by the CO and HI observations.
We analyzed high angular resolution 45.5 GHz images of the W49 North massive star forming region obtained in 1998 and 2016 with the Very Large Array. Most of the ultracompact HII regions show no detectable changes over the time interval of the observations. However, subcomponents B1, B2, G2a and G2c have increased its peak flux densities by values in the range of 3.8 to 21.4 %. Most interestingly, the cometary region C clearly shows proper motions that at the distance of the region are equivalent to a velocity of 76$pm$6 km s$^{-1}$ in the plane of the sky. We interpret this region as the ionized bowshock produced by a runaway O6 ZAMS star that was ejected from the eastern edge of Welchs ring about 6,400 years ago.
The CHAOS project is building a large database of LBT H II region spectra in nearby spiral galaxies to use direct abundances to better determine the dispersion in metallicity as a function of galactic radius. Here, we present CHAOS LBT observations of C II $lambda$4267 emission detected in 10 H II regions in M 101, and, using a new photoionization model based ionization correction factor, we convert these measurements into total carbon abundances. A comparison with M101 C II recombination line observations from the literature shows excellent agreement, and we measure a relatively steep gradient in log(C/H) of -0.37 +/- 0.06 dex/R_e. The C/N observations are consistent with a constant value of log(C/N) = 0.84 with a dispersion of only 0.09 dex, which, given the different nucleosynthetic sources of C and N, is challenging to understand. We also note that when plotting N/O versus O/H, all of the H II regions with detections of CII $lambda$4267 present N/O abundances at the minimum of the scatter in N/O at a given value of O/H. If the high surface brightness necessary for the detection of the faint recombination lines is interpreted as an indicator of H II region youth, then this may point to a lack of nitrogen pollution in the youngest H II regions. In the future, we anticipate that the CHAOS project will significantly increase the total number of C II $lambda$4267 measurements in extragalactic H II regions.
We used the Submillimeter Array to map the angular distribution of the H30$alpha$ recombination line (231.9 GHz) in the circumstellar region of the peculiar star MWC349A. The resolution was $1farcs2$, but because of high signal-to-noise ratio we measured the positions of all maser components to accuracies better than $0farcs01$, at a velocity resolution of $1 kms$. The two strongest maser components (called high velocity components) at velocities near -14 and $32 kms$ are separated by $0farcs048 pm 0farcs001$ (60 AU) along a position angle of $102 pm 1arcdeg$. The distribution of maser emission at velocities between and beyond these two strongest components were also provided. The continuum emission lies at the center of the maser distribution to within 10 mas. The masers appear to trace a nearly edge-on rotating disk structure, reminiscent of the water masers in Keplerian rotation in the nuclear accretion disk of the galaxy NGC4258. However, the maser components in MWC349A do not follow a simple Keplerian kinematic prescription with $v sim r^{-1/2}$, but have a larger power law index. We explore the possibility that the high velocity masers trace spiral density or shock waves. We also emphasize caution in the interpretation of relative centroid maser positions where the maser is not clearly resolved in position or velocity, and we present simulations that illustrate the range of applicability of the centroiding method.
We present new Jansky Very Large Array (VLA) images of the central region of the W49A star-forming region at 3.6~cm and at 7~mm at resolutions of 0farcs15 (1650 au) and 0farcs04 (440 au), respectively. The 3.6~cm data reveal new morphological detail in the ultracompact ion{H}{2} region population, as well as several previously unknown and unresolved sources. In particular, source A shows elongated, edge-brightened, bipolar lobes, indicative of a collimated outflow, and source E is resolved into three spherical components. We also present VLA observations of radio recombination lines at 3.6~cm and 7~mm, and IRAM Northern Extended Millimeter Array (NOEMA) observations at 1.2~mm. Three of the smallest ultracompact ion{H}{2} regions (sources A, B2 and G2) all show broad kinematic linewidths, with $Delta$V$_{FWHM}gtrsim$40~km~s$^{-1}$. A multi-line analysis indicates that broad linewidths remain after correcting for pressure broadening effects, suggesting the presence of supersonic flows. Substantial changes in linewidth over the 21 year time baseline at both 3.6 cm and 7 mm are found for source G2. At 3.6 cm, the linewidth of G2 changed from 31.7$pm$1.8 km s$^{-1}$ to 55.6$pm$2.7 km s$^{-1}$, an increase of $+$23.9$pm$3.4 km s$^{-1}$. The G2 source was previously reported to have shown a 3.6~cm continuum flux density decrease of 40% between 1994 and 2015. This source sits near the center of a very young bipolar outflow whose variability may have produced these changes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا