Do you want to publish a course? Click here

Young, Low-Mass Brown Dwarfs with Mid-Infrared Excesses

85   0   0.0 ( 0 )
 Added by Katelyn Allers
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have combined new I, J, H, and Ks imaging of portions of the Chamaeleon II, Lupus I, and Ophiuchus star-forming clouds with 3.6 to 24 micron imaging from the Spitzer Legacy Program, From Molecular Clouds to Planet Forming Disks, to identify a sample of 19 young stars, brown dwarfs and sub-brown dwarfs showing mid-infrared excess emission. The resulting sample includes sources with luminosities of 0.5>log(L/Lsun)>-3.1. Six of the more luminous sources in our sample have been previously identified by other surveys for young stars and brown dwarfs. Five of the sources in our sample have nominal masses at or below the deuterium burning limit (~12 M_J). Over three decades in luminosity, our sources have an approximately constant ratio of excess to stellar luminosity. We compare our observed SEDs to theoretical models of a central source with a passive irradiated circumstellar disk and test the effects of disk inclination, disk flaring, and the size of the inner disk hole on the strength/shape of the excess. The observed SEDs of all but one of our sources are well fit by models of flared and/or flat disks.



rate research

Read More

Mid-infrared data, including Spitzer warm-IRAC [3.6] and [4.5] photometry, is critical for understanding the cold population of brown dwarfs now being found, objects which have more in common with planets than stars. As effective temperature (T_eff) drops from 800 K to 400 K, the fraction of flux emitted beyond 3 microns increases rapidly, from about 40% to >75%. This rapid increase makes a color like H-[4.5] a very sensitive temperature indicator, and it can be combined with a gravity- and metallicity-sensitive color like H-K to constrain all three of these fundamental properties, which in turn gives us mass and age for these slowly cooling objects. Determination of mid-infrared color trends also allows better exploitation of the WISE mission by the community. We use new Spitzer Cycle 6 IRAC photometry, together with published data, to present trends of color with type for L0 to T10 dwarfs. We also use the atmospheric and evolutionary models of Saumon & Marley to investigate the masses and ages of 13 very late-type T dwarfs, which have H-[4.5] > 3.2 and T_eff ~ 500 K to 750 K.
73 - D. Stern 2006
We discuss color selection of rare objects in a wide-field, multiband survey spanning from the optical to the mid-infrared. Simple color criteria simultaneously identify and distinguish two of the most sought after astrophysical sources: the coolest brown dwarfs and the most distant quasars. We present spectroscopically-confirmed examples of each class identified in the IRAC Shallow Survey of the Bootes field of the NOAO Deep Wide-Field Survey. ISS J142950.9+333012 is a T4.5 brown dwarf at a distance of approximately 42 pc, and ISS J142738.5+331242 is a radio-loud quasar at redshift z=6.12. Our selection criteria identify a total of four candidates over 8 square degrees of the Bootes field. The other two candidates are both confirmed 5.5<z<6 quasars, previously reported by Cool et al. (2006). We discuss the implications of these discoveries and conclude that there are excellent prospects for extending such searches to cooler brown dwarfs and higher redshift quasars.
We present the results of a nonadiabatic, linear stability analysis of models of very low-mass stars (VLMSs) and brown dwarfs (BDs) during the deuterium burning phase in the center. We find unstable fundamental modes with periods varying between ~5 hr for a 0.1 Msun star and ~1 hr for a 0.02 Msun BD. The growth time of the instability decreases with decreasing mass and remains well below the deuterium burning time scale in the mass range considered (0.1--0.02 Msun). These results are robust against variations of the relevant input physics in the evolutionary models. We identify possible candidates for pulsational variability among known VLMSs and BDs in nearby star forming regions whose location in the HR diagram falls within or close to the boundary of the instability strip. Finally, we discuss the possibility that the variability observed in a few objects with periods of ~1 hr can be interpreted in terms of pulsation.
218 - P. Dawson , A. Scholz , T.P. Ray 2014
Spectroscopic follow-up is a pre-requisite for studies of the formation and early evolution of brown dwarfs. Here we present IRTF/SpeX near-infrared spectroscopy of 30 candidate members of the young Upper Scorpius association, selected from our previous survey work. All 24 high confidence members are confirmed as young very low mass objects with spectral types from M5 to L1, 15-20 of them are likely brown dwarfs. This high yield confirms that brown dwarfs in Upper Scorpius can be identified from photometry and proper motions alone, with negligible contamination from field objects (<4%). Out of the 6 candidates with lower confidence, 5 might still be young very low mass members of Upper Scorpius, according to our spectroscopy. We demonstrate that some very low mass class II objects exhibit radically different near infrared (0.6 - 2.5micron) spectra from class III objects, with strong excess emission increasing towards longer wavelengths and partially filled in features at wavelengths shorter than 1.25micron. These characteristics can obscure the contribution of the photosphere within such spectra. Therefore, we caution that near infrared derived spectral types for objects with discs may be unreliable. Furthermore, we show that the same characteristics can be seen to some extent in all class II and even a significant fraction of class III objects (~40%), indicating that some of them are still surrounded by traces of dust and gas. Based on our spectra, we select a sample of objects with spectral types of M5 to L1, whose near-infrared emission represents the photosphere only. We recommend the use of these objects as spectroscopic templates for young brown dwarfs in the future.
82 - E. Sanchis , L. Testi , A. Natta 2019
We present new 890 $mu m$ continuum ALMA observations of 5 brown dwarfs (BDs) with infrared excess in Lupus I and III -- which, in combination with 4 BDs previously observed, allowed us to study the mm properties of the full known BD disk population of one star-forming region. Emission is detected in 5 out of the 9 BD disks. Dust disk mass, brightness profiles and characteristic sizes of the BD population are inferred from continuum flux and modeling of the observations. Only one source is marginally resolved, allowing for the determination of its disk characteristic size. We conduct a demographic comparison between the properties of disks around BDs and stars in Lupus. Due to the small sample size, we cannot confirm or disprove if the disk mass over stellar mass ratio drops for BDs, as suggested for Ophiuchus. Nevertheless, we find that all detected BD disks have an estimated dust mass between 0.2 and 3.2 $M_{bigoplus}$; these results suggest that the measured solid masses in BD disks can not explain the observed exoplanet population, analogous to earlier findings on disks around more massive stars. Combined with the low estimated accretion rates, and assuming that the mm-continuum emission is a reliable proxy for the total disk mass, we derive ratios of $dot{M}_{mathrm{acc}} / M_{mathrm{disk}}$ significantly lower than in disks around more massive stars. If confirmed with more accurate measurements of disk gas masses, this result could imply a qualitatively different relationship between disk masses and inward gas transport in BD disks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا