Constraints on the Evolution of the Primordial Magnetic Field from the Small-Scale Cosmic Microwave Background Angular Anisotropy


Abstract in English

Recent observations of the cosmic microwave background (CMB) have extended the measured power spectrum to higher multipoles $lgtrsim$1000, and there appears to be possible evidence for excess power on small angular scales. The primordial magnetic field (PMF) can strongly affect the CMB power spectrum and the formation of large scale structure. In this paper, we calculate the CMB temperature anisotropies generated by including a power-law magnetic field at the photon last-scattering surface (PLSS). We then deduce an upper limit on the PMF based on our theoretical analysis of the power excess on small angular scales. We have taken into account several important effects such as the modified matter sound speed in the presence of a magnetic field. An upper limit to the field strength of $|B_lambda|lesssim$ 4.7 nG at the present scale of 1 Mpc is deduced. This is obtained by comparing the calculated theoretical result including the Sunyaev-Zeldovich (SZ) effect with recent observed data on the small-scale CMB anisotropies from the $Wilkinson Microwave Anisotropy Probe$ (WMAP), the Cosmic Background Imager (CBI), and the Arcminute Cosmology Bolometer Array Receiver (ACBAR). We discuss several possible mechanisms for the generation and evolution of the PMF.

Download