Do you want to publish a course? Click here

Molecular Hydrogen in a Damped Lyman-alpha System at z_abs=4.224

126   0   0.0 ( 0 )
 Added by Cedric Ledoux
 Publication date 2006
  fields Physics
and research's language is English
 Authors C. Ledoux ESO




Ask ChatGPT about the research

We present the direct detection of molecular hydrogen at the highest redshift known today (z_abs=4.224) in a Damped Lyman-alpha (DLA) system toward the quasar PSS J1443+2724. This absorber is remarkable for having one of the highest metallicities amongst DLA systems at z_abs>3, with a measured iron abundance relative to Solar of -1.12+/-0.10. We provide for the first time in this system accurate measurements of NI, MgII, SII and ArI column densities. The sulfur and nitrogen abundances relative to Solar, -0.63+/-0.10 and -1.38+/-0.10 respectively, correspond exactly to the primary nitrogen production plateau. H2 absorption lines are detected in four different rotational levels (J=0, 1, 2 and 3) of the vibrational ground-state in three velocity components with total column densities of log N(H2)=17.67, 17.97, 17.48 and 17.26 respectively. The J=4 level is tentatively detected in the strongest component with log N(H2)~14. The mean molecular fraction is log f=-2.38+/-0.13, with f=2N(H2)/(2N(H2)+N(HI)). We also measure log N(HD)/N(H2)<-4.2. The excitation temperatures T_{01} for the two main components of the system are 96 and 136 K respectively. We argue that the absorbing galaxy, whose star-formation activity must have started at least 2-5x10^8 yrs before z=4.224, is in a quiescent state at the time of observation. The density of the gas is small, n_H<=50 cm^{-3}, and the temperature is of the order of T~90-180 K. The high excitation of neutral carbon in one of the components can be explained if the temperature of the Cosmic Microwave Background Radiation has the value expected at the absorber redshift, T=14.2 K.



rate research

Read More

426 - Patrick Petitjean 2000
We report results from our mini-survey for molecular hydrogen in eight high redshift damped Lyman-alpha (DLA) systems using the ESO Ultra-violet and Visible Spectrograph on the VLT. In addition, we investigate two systems using ESO public data. We include in the sample the only system where H2 was previously detected and studied at high-spectral resolution. Altogether our sample consists of eleven absorbers with 1.85<z_abs<3.4. We confirm the presence of H2 in the z_abs = 2.3377, metal-poor ([Si/H] = -1.20) system toward PKS 1232+082. The derived molecular fraction, f = 2N(H2)/(2N(H2)+N(HI)) = 4 10-4, is two orders of magnitude less than what has been claimed previously from low-resolution data. The physical conditions within the cloud can be constrained directly from observation. The kinetic temperature and particle density are in the ranges, respectively, 100<T<300 K and 30<nH<50 cm-3. In addition, UV pumping is of the same order of magnitude than in our Galaxy. The upper limits on the molecular fraction derived in nine of the systems are in the range 1.2 10-7 - 1.6 10-5. The molecular abundance in a few DLA systems (and in particular in the two systems where H2 is detected) is consistent with what is seen in the Magellanic clouds. But most of the DLA measurements are well below these values. This is probably partly due to small amounts of dust and/or high UV flux. We argue however that the lack of molecules is a direct consequence of high kinetic temperature (T>3000 K) implying a low formation rate of H2 onto dust grains. Therefore, most of the DLA systems arise in warm and diffuse neutral gas. (Abridged)
329 - Jian Ge , Jill Bechtold 1997
We present a new ultra-violet spectrum of the QSO 0013-004 with 0.9 AA resolution obtained with the MMT Blue spectrograph. The upsilon = 0 - 0, 1 - 0, 2 - 0 and 3 - 0 Lyman bands of H_2 associated with the z = 1.9731 damped Ly alpah absorption line system have been detected. The H_2 column density is N(H_2) = 6.9 (pm 1.6)times 10^{19} cm^{-2}, and the Doppler parameter b = 15pm 2 km/s. The populations of different rotational levels are measured and used to derive the excitation temperatures. The estimated kinetic temperature T_Ksim 70 K, and the total particle number density n(H) sim 300 cm^{-3}. The UV photoabsorption rate $beta_0 sim 6.7times 10^{-9}$ s^{-1}, about a factor of few times greater than that in a typical diffuse Milky Way interstellar cloud. The total hydrogen column density is $N(H) = 6.4(pm 0.5)times 10^{20} cm^{-2}$. The fractional H_2 abundance f = 2N(H_2)/(2N(H_2) + N(H I)) sim 0.22 pm 0.05 is the highest among all observed damped Lyal absorbers. The high fractional H_2 abundance is consistent with the inferred presence of dust and strong C I absorption in this absorber.
We study the dust depletion pattern in eight well separated components of the z=1.973, logN(HI)=20.83, damped Lyman-alpha system toward Q0013-004, four of which have detectable H2 absorption. The apparent correlation between the abundance ratios [Fe/S] and [Si/S] in the components indicates that the abundance pattern is indeed due to dust-depletion. In particular, we find evidence for depletion similar to what is observed in cold gas of the Galactic disk ([Fe/Zn]=-1.59, Fe/S=-1.74, Zn/S=-0.15, [Si/S]=-0.85) in one of the weakest components in which molecular hydrogen is detected with logN(H2)=16.5. This is the first time such a large depletion is seen in a DLA system. This observation supports the possibility that current samples of DLA systems might be biased against the presence of cold and dusty gas along the line of sight. The overall metallicities of this peculiar DLA system in which OI and CII are spread over 1050 km/s are [P/H]=-0.64, [Zn/H]=-0.74 and [S/H]=-0.82 relative to solar. The sub-DLA system at z=1.96753 has [P/H]>0.06, [Zn/H]>-0.02 and [S/H]>-0.18. The overall molecular fraction is in the range -2.7<logf<-0.6. CO is not detected (logN(CO)/N(HI)<-8) and HD could be present at z=1.97380. We show that the presence of H2 is closely related to the physical conditions of the gas: high particle density together with low temperature. The observed excitation of high J H2 levels and the molecular fraction show large variations from one component to the other suggesting that the UV radiation field is highly inhomogeneous throughout the system. Gas pressure, estimated from CI absorptions, is larger than what is observed in the ISM of our Galaxy. All this is probably a consequence of intense star-formation activity in the vicinity of the absorbing gas. (Abridged)
We have searched for molecular hydrogen in damped Lyman-alpha (DLA) and sub-DLA systems at z>1.8 using UVES at the VLT. Out of the 33 systems in our sample, 8 have firm and 2 have tentative detections of associated H2 absorption lines. Considering that 3 detections were already known from past searches, H2 is detected in 13 to 20 percent of the newly-surveyed systems. We report new detections of molecular hydrogen at z=2.087 and 2.595 toward, respectively, Q 1444+014 and Q 0405-443, and also reanalyse the system at z=3.025 toward Q 0347-383. We find that there is a correlation between metallicity and depletion factor in both our sample and also the global population of DLA systems (60 systems in total). The DLA and sub-DLA systems where H2 is detected are usually amongst those having the highest metallicities and the largest depletion factors. Moreover, the individual components where H2 is detected have depletion factors systematically larger than other components in the profiles. In two different systems, one of the H2-detected components even has [Zn/Fe]>=1.4. These are the largest depletion factors ever seen in DLA systems. All this clearly demonstrates the presence of dust in a large fraction of the DLA systems. The mean H2 molecular fraction is generally small in DLA systems and similar to what is observed in the Magellanic Clouds. From 58 to 75 percent of the DLA systems have log f<-6. This can be explained if the formation rate of H2 onto dust grains is reduced in those systems, probably because the gas is warm (T>1000 K) and/or the ionizing flux is enhanced relative to what is observed in our Galaxy.
[Abridged]. Here, we report on the discovery of the galaxy counterpart of the z_abs=2.58 DLA on the line-of-sight to the z=3.07 quasar SDSS J091826.16+163609.0. The galaxy counterpart of the DLA is detected in the OIII 5007 and OII 3726,3729 emission lines redshifted into the NIR at an impact parameter of 16 kpc. Ly-alpha emission is not detected. The upper limit implies that Ly-alpha emission from this galaxy is suppressed by more than an order of magnitude. The DLA is amongst the most metal-rich DLAs studied so far at comparable redshifts. We find evidence for substantial depletion of refractory elements onto dust grains. Fitting the main metal line component of the DLA, which is located at z_abs=2.5832 and accounts for at least 85% of the total column density of low-ionisation species, we measure metal abundances from ZnII, SII, SiII, CrII, MnII, FeII and NiII of -0.12, -0.26, -0.46, -0.88, -0.92, -1.03 and -0.78, respectively. In addition, we detect absorption in the Lyman and Werner bands of hydrogen, which represents the first detection of H_2 molecules with X-shooter. The background quasar Q0918+1636 is amongst the reddest QSOs at redshifts 3.02<z<3.12 from the SDSS catalogue. Its UV to NIR spectrum is well fitted by a composite QSO spectrum reddened by SMC/LMC-like extinction curves at z_abs=2.58 with a significant amount of extinction given by A_V = 0.2 mag. This supports previous claims that there may be more metal-rich DLAs missing from current samples due to dust reddening of the background QSOs. The fact that there is evidence for dust both in the central emitting regions of the galaxy (as evidenced by the lack of Ly-alpha emission) and at an impact parameter of 16 kpc (as probed by the DLA) suggests that dust is widespread in this system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا