Do you want to publish a course? Click here

Hubble Space Telescope Observations of SV Cam: I. The Importance of Unresolved Starspot Distributions in Lightcurve Fitting

49   0   0.0 ( 0 )
 Added by Sandra Jeffers
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have used maximum entropy eclipse mapping to recover images of the visual surface brightness distribution of the primary component of the RS CVn eclipsing binary SV Cam, using high-precision photometry data obtained during three primary eclipses with STIS aboard the Hubble Space Telescope. These were augmented by contemporaneous ground-based photometry secured around the rest of the orbit. The goal of these observations was to determine the filling factor and size distribution of starspots too small to be resolved by Doppler imaging. The information content of the final image and the fit to the data were optimised with respect to various system parameters using the chi^2 landscape method, using an eclipse mapping code that solves for large-scale spot coverage. It is only with the unprecedented photometric precision of the HST data (0.00015 mag) that it is possible to see strong discontinuities at the four contact points in the residuals of the fit to the lightcurve. These features can only be removed from the residual lightcurve by the reduction of the photospheric temperature, to synthesise high unresolvable spot coverage, and the inclusion of a polar spot. We show that this spottedness of the stellar surface can have a significant impact on the determination of the stellar binary parameters and the fit to the lightcurve by reducing the secondary radius from 0.794 +/- 0.009 Rsun to 0.727 +/- 0.009 Rsun. This new technique can also be applied to other binary systems with high precision spectrophotometric observations.



rate research

Read More

The Cosmic Evolution Survey (COSMOS) was initiated with an extensive allocation (590 orbits in Cycles 12-13) using the Hubble Space Telescope (HST) for high resolution imaging. Here we review the characteristics of the HST imaging with the Advanced Camera for Surveys (ACS) and parallel observations with NICMOS and WFPC2. A square field (1.8$sq$deg) has been imaged with single-orbit ACS I-F814W exposures with 50% completeness for sources 0.5arcsec in diameter at I$_{AB} $ = 26.0 mag. The ACS imaging is a key part of the COSMOS survey, providing very high sensitivity and high resolution (0.09arcsec FWHM, 0.05arcsec pixels) imaging and detecting 1.2 million objects to a limiting magnitude of 26.5 (AB). These images yield resolved morphologies for several hundred thousand galaxies. The small HST PSF also provides greatly enhanced sensitivity for weak lensing investigations of the dark matter distribution.
A search for novae in M49 (NGC 4472) has been undertaken with the Hubble Space Telescope. A 55-day observing campaign in F555W (19 epochs) and F814W (five epochs) has led to the discovery of nine novae. We find that M49 may be under-abundant in slow, faint novae relative to the Milky Way and M31. Instead, the decline rates of the M49 novae are remarkably similar to those of novae in the LMC. This fact argues against a simple classification of novae in bulge and disk sub-classes. We examine the Maximum-Magnitude versus Rate of Decline (MMRD) relation for novae in M49, finding only marginal agreement with the Galactic and M31 MMRD relations. A recalibration of the Buscombe-de Vaucouleurs relation gives an absolute magnitude 15 days past maximum of M_{V,15} = -6.36+/-0.19, which is substantially brighter than previous calibrations based on Galactic novae. Monte Carlo simulations yield a global nova rate for M49 of 100{+35}{-30} per year, and a luminosity-specific nova rate in the range u_K = 1.7-2.5 per year per 10^{-10} L_K,solar. These rates are far lower than those predicted by current models of nova production in elliptical galaxies and may point to a relative scarity of novae progenitors, or an increased recurrence timescale, in early-type environments.
We present an F606W-F814W color-magnitude diagram for the Draco dwarf spheroidal galaxy based on Hubble Space Telescope WFPC2 images. The luminosity function is well-sampled to 3 magnitudes below the turn-off. We see no evidence for multiple turnoffs and conclude that, at least over the field of the view of the WFPC2, star formation was primarily single-epoch. If the observed number of blue stragglers is due to extended star formation, then roughly 6% (upper limit) of the stars could be half as old as the bulk of the galaxy. The color difference between the red giant branch and the turnoff is consistent with an old population and is very similar to that observed in the old, metal-poor Galactic globular clusters M68 and M92. Despite its red horizontal branch, Draco appears to be older than M68 and M92 by 1.6 +/- 2.5 Gyrs, lending support to the argument that the ``second parameter which governs horizontal branch morphology must be something other than age. Dracos observed luminosity function is very similar to that of M68, and the derived initial mass function is consistent with that of the solar neighborhood.
We present a V-I color-magnitude diagram for a region 1-2 from the center of M32 based on Hubble Space Telescope WFPC2 images. The broad color-luminosity distribution of red giants shows that the stellar population comprises stars with a wide range in metallicity. This distribution cannot be explained by a spread in age. The blue side of the giant branch rises to M_I ~ -4.0 and can be fitted with isochrones having [Fe/H] ~ -1.5. The red side consists of a heavily populated and dominant sequence that tops out at M_I ~ -3.2, and extends beyond V-I=4. This sequence can be fitted with isochrones with -0.2 < [Fe/H] < +0.1, for ages running from 15 Gyr to 5 Gyr respectively. We do not find the optically bright asymptotic giant branch stars seen in previous ground-based work and argue that the majority of them were artifacts of crowding. Our results are consistent with the presence of the infrared-luminous giants found in ground-based studies, though their existence cannot be directly confirmed by our data. There is little evidence for an extended or even a red horizontal branch, but we find a strong clump on the giant branch itself. If the age spread is not extreme, the distribution of metallicities in M32 is considerably narrower than that of the closed-box model of chemical evolution, and also appears somewhat narrower than that of the solar neighborhood. Overall, the M32 HST color-magnitude diagram is consistent with the average luminosity-weighted age of 8.5 Gyr and [Fe/H] = -0.25 inferred from integrated spectral indices.
Near-Sun Comet C/2019 Y4 (ATLAS) is the first member of a long-period comet group observed to disintegrate well before perihelion. Here we present our investigation into this disintegration event using images obtained in a 3-day {it Hubble Space Telescope} (hst) campaign. We identify two fragment clusters produced by the initial disintegration event, corresponding to fragments C/2019 Y4-A and C/2019 Y4-B identified in ground-based data. These two clusters started with similar integrated brightness, but exhibit different evolutionary behavior. C/2019 Y4-A was much shorter-lived compared to C/2019 Y4-B, and showed signs of significant mass-loss and changes in size distribution throughout the 3-day campaign. The cause of the initial fragmentation is undetermined by the limited evidence but crudely compatible with either the spin-up disruption of the nucleus or runaway sublimation of sub-surface supervolatile ices, either of which would lead to the release of a large amount of gas as inferred from the significant bluing of the comet observed shortly before the disintegration. Gas can only be produced by the sublimation of volatile ices, which must have survived at least one perihelion passage at a perihelion distance of $q=0.25$~au. We speculate that Comet ATLAS is derived from the ice-rich interior of a non-uniform, kilometer-wide progenitor that split during its previous perihelion. This suggests that comets down to a few kilometers in diameter can still possess complex, non-uniform interiors that can protect ices against intense solar heating.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا