Do you want to publish a course? Click here

INTEGRAL observations of the Crab pulsar

132   0   0.0 ( 0 )
 Added by Teresa Mineo
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The paper presents the timing and spectral analysis of several observations of the Crab pulsar performed with INTEGRAL in the energy range 3-500 keV. All these observations, when summed together provide a high statistics data set which can be used for accurate phase resolved spectroscopy. A detailed study of the pulsed emission at different phase intervals is performed. The spectral distribution changes with phase showing a characteristic reverse S shape of the photon index. Moreover the spectrum softens with energy, in each phase interval, and this behavior is adequately modeled over the whole energy range 3-500 keV with a single curved law with a slope variable with Log(E), confirming the BeppoSAX results on the curvature of the pulsed emission. The bending parameter of the log-parabolic model is compatible with a single value of 0.14+/-0.02 over all phase intervals. Results are discussed within the three-dimensional outer gap model.

rate research

Read More

157 - A. McCann 2013
The Fermi space telescope has detected over 100 pulsars. These discoveries have ushered in a new era of pulsar astrophysics at gamma-ray energies. Gamma-ray pulsars, regardless of whether they are young, old, radio-quiet etc, all exhibit a seemingly unifying characteristic: a spectral energy distribution which takes the form of a power law with an exponential cut-off occurring between ~1 and ~10 GeV. The single known exception to this is the Crab pulsar, which was recently discovered to emit pulsed gamma rays at energies exceeding a few hundred GeV. Here we present an update on observations of the Crab pulsar above 100 GeV with VERITAS. We show some new results from a joint gamma-ray/radio observational campaign to search for a correlation between giant radio pulses and pulsed VHE emission from the Crab pulsar. We also present some preliminary results on Lorentz invariance violation tests performed using Fermi and VERITAS observations of the Crab pulsar.
90 - Simon Vidrih 2003
Photometric data of the Crab pulsar, obtained in stroboscopic mode over a period of more than eight years, are presented here. The applied Fourier analysis reveals a faint 60 second modulation of the pulsars signal, which we interpret as a free precession of the pulsar.
We observed the Crab pulsar in October 2008 at the Copernico Telescope in Asiago - Cima Ekar with the optical photon counter Aqueye (the Asiago Quantum Eye) which has the best temporal resolution and accuracy ever achieved in the optical domain (hundreds of picoseconds). Our goal was to perform a detailed analysis of the optical period and phase drift of the main peak of the Crab pulsar and compare it with the Jodrell Bank ephemerides. We determined the position of the main peak using the steepest zero of the cross-correlation function between the pulsar signal and an accurate optical template. The pulsar rotational period and period derivative have been measured with great accuracy using observations covering only a 2 day time interval. The error on the period is 1.7 ps, limited only by the statistical uncertainty. Both the rotational frequency and its first derivative are in agreement with those from the Jodrell Bank radio ephemerides archive. We also found evidence of the optical peak leading the radio one by ~230 microseconds. The distribution of phase-residuals of the whole dataset is slightly wider than that of a synthetic signal generated as a sequence of pulses distributed in time with the probability proportional to the pulse shape, such as the average count rate and background level are those of the Crab pulsar observed with Aqueye. The counting statistics and quality of the data allowed us to determine the pulsar period and period derivative with great accuracy in 2 days only. The time of arrival of the optical peak of the Crab pulsar leads the radio one in agreement with what recently reported in the literature. The distribution of the phase residuals can be approximated with a Gaussian and is consistent with being completely caused by photon noise (for the best data sets).
The Crab region was observed several times by INTEGRAL for calibration purposes. This paper aims at underlining the systematic interactions between (i) observations of this reference source, (ii) in-flight calibration of the instrumental response and (iii) the development and validation of the analysis tools of the SPI spectrometer. It first describes the way the response is produced and how studies of the Crab spectrum lead to improvements and corrections in the initial response. Then, we present the tools which were developed to extract spectra from the SPI observation data and finally a Crab spectrum obtained with one of these methods, to show the agreement with previous experiments. We conclude with the work still ahead to understand residual uncertainties in the response.
We report on the observations of the Crab pulsar with the MAGIC telesopes. Data were taken both in the mono-mode ($>25$ GeV) and in the stereo-mode ($>50$ GeV). Clear signals from the two peaks were detected with both modes and the phase resolved energy spectra were calculated. By comparing with the measurements done by Fermi-LAT, we found that the energy spectra of the Crab pulsar does not follow a power law with an exponential cutoff, but that it extends as a power law after the break at around 5 GeV. This suggests that the emission above 25 GeV is not dominated by the curvatura radiation, which is inconsistent with the standard prediction of the OG and SG models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا