The Sloan Lens ACS Survey. III - The Structure and Formation of Early-type Galaxies and their Evolution since z~1


Abstract in English

(Abridged) We present a joint gravitational lensing and stellar dynamical analysis of fifteen massive field early-type galaxies, selected from the Sloan Lens (SLACS) Survey. The following numerical results are found: (i) A joint-likelihood gives an average logarithmic density slope for the total mass density of 2.01 (+0.02/-0.03) (68 perecnt C.L). inside the Einstein radius. (ii) The average position-angle difference between the light distribution and the total mass distribution is found to be 0+-3 degrees, setting an upper limit of <= 0.035 on the average external shear. (iii) The average projected dark-matter mass fraction is inferred to be 0.25+-0.06 inside R_E, using the stellar mass-to-light ratios derived from the Fundamental Plane as priors. (iv) Combined with results from the LSD Survey, we find no significant evolution of the total density slope inside one effective radius: a linear fit gives dgamma/dz = 0.23+-0.16 (1-sigma) for the range z=0.08-1.01. The small scatter and absence of significant evolution in the inner density slopes suggest a collisional scenario where gas and dark matter strongly couple during galaxy formation, leading to a total mass distribution that rapidly converge to dynamical isothermality.

Download