No Arabic abstract
The dominating reionization source in the young universe has yet to be identified. Possible candidates include metal poor starburst dwarf galaxies of which the Blue Compact Galaxy Haro 11 may represent a local counterpart. Using the Far Ultraviolet Spectroscopic Explorer (FUSE) we obtained spectra of Haro 11 to search for leaking ionizing radiation. A weak signal shortwards of the Lyman break is identified as Lyman continuum (LyC) emission escaping from the ongoing starburst. From profile fitting to weak metal lines we derive column densities of the low ionization species. Adopting a metallicity typical of the H II regions of Haro 11, the corresponding H I column density is optically thick in the LyC. Therefore most of the LyC photons must escape through transparent holes in the interstellar medium. Using spectral evolutionary models we constrain the escape fraction of the produced LyC photons to between 4 and 10%, assuming a normal Salpeter IMF. We argue that in a hierarchical galaxy formation scenario, this allows for a substantial contribution to cosmic reionization by starburst dwarf galaxies at high redshifts.
Escaping Lyman continuum photons from galaxies likely reionized the intergalactic medium at redshifts $zgtrsim6$. However, the Lyman continuum is not directly observable at these redshifts and secondary indicators of Lyman continuum escape must be used to estimate the budget of ionizing photons. Observationally, at redshifts $zsim2-3$ where the Lyman continuum is observationally accessible, surveys have established that many objects that show appreciable Lyman continuum escape fractions $f_{esc}$ also show enhanced [OIII]/[OII] (O$_{32}$) emission line ratios. Here, we use radiative transfer analyses of cosmological zoom-in simulations of galaxy formation to study the physical connection between $f_{esc}$ and O$_{32}$. Like the observations, we find that the largest $f_{esc}$ values occur at elevated O$_{32}sim3-10$ and that the combination of high $f_{esc}$ and low O$_{32}$ is extremely rare. While high $f_{esc}$ and O$_{32}$ often are observable concurrently, the timescales of the physical origin for the processes are very different. Large O$_{32}$ values fluctuate on short ($sim$1 Myr) timescales during the Wolf-Rayet-powered phase after the formation of star clusters, while channels of low absorption are established over tens of megayears by collections of supernovae. We find that while there is no direct causal relation between $f_{esc}$ and O$_{32}$, high $f_{esc}$ most often occurs after continuous input from star formation-related feedback events that have corresponding excursions to large O$_{32}$ emission. These calculations are in agreement with interpretations of observations that large $f_{esc}$ tends to occur when O$_{32}$ is large, but large O$_{32}$ does not necessarily imply efficient Lyman continuum escape.
Simulations have indicated that most of the escaped Lyman continuum photons escape through a minority of solid angles with near complete transparency, with the remaining majority of the solid angles largely opaque, resulting in a very broad and skewed probability distribution function (PDF) of the escape fraction when viewed at different angles. Thus, the escape fraction of Lyman continuum photons of a galaxy observed along a line of sight merely represents the properties of the interstellar medium along that line of sight, which may be an ill-representation of true escape fraction of the galaxy averaged over its full sky. Here we study how Lyman continuum photons escape from galaxies at $z=4-6$, utilizing high-resolution large-scale cosmological radiation-hydrodynamic simulations. We compute the PDF of the mean escape fraction ($left<f_{rm esc,1D}right>$) averaged over mock observational samples, as a function of the sample size, compared to the true mean (had you an infinite sample size). We find that, when the sample size is small, the apparent mean skews to the low end. For example, for a true mean of 6.7%, an observational sample of (2,10,50) galaxies at $z=4$ would have have 2.5% probability of obtaining the sample mean lower than $left<f_{rm esc,1D}right>=$(0.007%, 1.8%, 4.1%) and 2.5% probability of obtaining the sample mean being greater than (43%, 18%, 11%). Our simulations suggest that at least $sim$ 100 galaxies should be stacked in order to constrain the true escape fraction within 20% uncertainty.
Direct collapse black holes forming in pristine, atomically-cooling haloes at $z approx 10-20$ may act as the seeds of supermassive black holes (BH) at high redshifts. In order to create a massive BH seed, the host halo needs to be prevented from forming stars. H$_2$ therefore needs to be irradiated by a large flux of Lyman-Werner (LW) UV photons in order to suppress H$_2$ cooling. A key uncertainty in this scenario is the escape fraction of LW radiation from first galaxies, the dominant source of UV photons at this epoch. To better constrain this escape fraction, we have performed radiation-hydrodynamical simulations of the growth of HII regions and their associated photodissociation regions in the first galaxies using the ZEUS-MP code. We find that the LW escape fraction crucially depends on the propagation of the ionisation front (I-front). For an R-type I-front overrunning the halo, the LW escape fraction is always larger than 95%. If the halo recombines later from the outside--in, due to a softened and weakened spectrum, the LW escape fraction in the rest-frame of the halo (the near-field) drops to zero. A detailed and careful analysis is required to analyse slowly moving, D-type I-fronts, where the escape fraction depends on the microphysics and can be as small as 3% in the near-field and 61% in the far-field or as large as 100% in both the near-field and the far-field.
(Abridged) Lyman-alpha (Lya) is a dominant probe of the galaxy population at high-z. However, interpretation of data drawn from Lya alone hinges on the Lya escape fraction which, due to the complex radiative transport, may vary greatly. Here we map the Lya emission from local starburst Haro 11, a Lya emitter and the only known candidate for low-z Lyman continuum emission (LyC). To aid in the interpretation we perform a detailed multi-wavelength analysis and model the stellar population, dust distribution, ionising photon budget, and star-cluster population. We use archival X-ray observations to further constrain properties of the starburst and estimate the HI column density. The Lya morphology is found to be strongly decoupled from stellar and nebular (H-alpha) morphologies. General surface photometry finds only very slight correlation between Lya and H-halpha, E(B-V), and stellar age. Only around the central Lya-bright cluster do we find the Lya/Ha ratio at values predicted by recombination theory. The total Lya escape fraction is found to be just 3%. We compute that ~90% of the Lya photons that escape do so after undergoing multiple resonance scattering events, masking their point of origin. This leads to a largely symmetric distribution and, by increasing the distance that photons must travel to escape, decreases the escape probability significantly. While dust must ultimately be responsible for the destruction of Lya, it plays little role in governing the observed morphology, which is regulated more by ISM kinematics and geometry. We find tentative evidence for local Lya equivalent width in the immediate vicinity of star-clusters being a function of cluster age, consistent with hydrodynamic studies. We estimate the ionising photon production and further constrain the escape fraction at 900 AA to <~9% .
A large number of high-redshift galaxies have been discovered via their narrow-band Lya line or broad-band continuum colors in recent years. The nature of the escaping process of photons from these early galaxies is crucial to understanding galaxy evolution and the cosmic reionization. Here, we investigate the escape of Lya, non-ionizing UV-continuum (l = 1300 - 1600 angstrom in rest frame), and ionizing photons (l < 912 angstrom) from galaxies by combining a cosmological hydrodynamic simulation with three-dimensional multi-wavelength radiative transfer calculations. The galaxies are simulated in a box of 5^3 h^-3 Mpc^3 with high resolutions using the Aquila initial condition which reproduces a Milky Way-like galaxy at redshift z=0. We find that the escape fraction (fesc) of these different photons shows a complex dependence on redshift and galaxy properties: fesc(Lya) and fesc(UV) appear to evolve with redshift, and they show similar, weak correlations with galaxy properties such as mass, star formation, metallicity, and dust content, while fesc(Ion) remains roughly constant at ~ 0.2 from z ~ 0 - 10, and it does not show clear dependence on galaxy properties. fesc(Lya) correlates more strongly with fesc(UV) than with fesc(Ion). In addition, we find a relation between the emergent Lya luminosity and the ionizing photon emissivity of Lyman Alpha Emitters (LAEs). By combining this relation with the observed luminosity functions of LAEs at different redshift, we estimate the contribution from LAEs to the reionization of intergalactic medium (IGM). Our result suggests that ionizing photons from LAEs alone are not sufficient to ionize IGM at z > 6, but they can maintain the ionization of IGM at z ~ 0 - 5.