The question of the degree of order in the magnetic fields of relativistic jets is important to any understanding of their production. Both vector-ordered (e.g. helical) and disordered, but anisotropic fields can produce the high observed degrees of polarization. We outline our models of jets in FR I radio galaxies as decelerating relativistic flows. We then present theoretical calculations of the synchrotron emission from different field configurations and compare them with observed emission from FR I jets. We show that large-scale helical fields (with significant poloidal and toroidal components) are inconsistent with observations. The combination of an ordered toroidal and disordered poloidal component is consistent with our data, as is an entirely disordered field. Jets must also contain small, but significant amounts of radial field.