No Arabic abstract
We present deep HST/ACS observations in g,r,i,z towards the z=4.1 radio galaxy TN J1338-1942 and its overdensity of >30 spectroscopically confirmed Lya emitters (LAEs). We select 66 g-band dropouts to z=27, 6 of which are also a LAE. Although our color-color selection results in a relatively broad redshift range centered on z=4.1, the field of TN J1338-1942 is richer than the average field at the >5 sigma significance, based on a comparison with GOODS. The angular distribution is filamentary with about half of the objects clustered near the radio galaxy, and a small, excess signal (2 sigma) in the projected pair counts at separations of <10 is interpreted as being due to physical pairs. The LAEs are young (a few x 10^7 yr), small (<r_50> = 0.13) galaxies, and we derive a mean stellar mass of ~10^8-9 Msun based on a stacked K-band image. We determine star formation rates, sizes, morphologies, and color-magnitude relations of the g-dropouts and find no evidence for a difference between galaxies near TN J1338-1942 and in the field. We conclude that environmental trends as observed in clusters at much lower redshift are either not yet present, or are washed out by the relatively broad selection in redshift. The large galaxy overdensity, its corresponding mass overdensity and the sub-clustering at the approximate redshift of TN J1338-1942 suggest the assemblage of a >10^14 Msun structure, confirming that it is possible to find and study cluster progenitors in the linear regime at z>4.
We present broad-band imaging with the Subaru Telescope of a 25x25 field surrounding the radio galaxy TN J1338-1942 at redshift z=4.1. The field contains excesses of Lyman-alpha emitters (LAEs) and Lyman break galaxies (LBGs) identified with a protocluster surrounding the radio galaxy. Our new wide-field images provide information about the boundary of the protocluster and its surroundings. There are 874 candidate LBGs within our field, having redshifts in the range z=3.5-4.5. An examination of the brightest of these (with i< 25.0) shows that the most prominent concentration coincides with the previously discovered protocluster. The diameter of this galaxy overdensity corresponds to ~2 Mpc at z=4, consistent with the previous estimation using LAEs. Several other concentrations of LBGs are observed in the field, some of which may well be physically connected with the z=4.1 protocluster. The observed structure in the smoothed LBG distribution can be explained as the projection of large-scale structure, within the redshift range z=3.5-4.5, comprising compact overdensities and prominent larger voids. If the 5-8 observed compact overdensities are associated with protoclusters, the observed protocluster volume density is ~5x10^-6 Mpc^-3, similar to the volume density of rich clusters in the local Universe.
We present new information on galaxies in the vicinity of luminous radio galaxies and quasars at z=4,5,6. These fields were previously found to contain overdensities of Lyman Break Galaxies (LBGs) or spectroscopic Lyman alpha emitters. We use HST and Spitzer data to infer stellar masses, and contrast our results with large samples of LBGs in more average environments as probed by the Great Observatories Origins Deep Survey (GOODS). The following results were obtained. First, LBGs in both overdense regions and in the field at z=4-5 lie on a very similar sequence in a z-[3.6] versus [3.6] color-magnitude diagram. This is interpreted as a sequence in stellar mass (log[M*/Msun] = 9-11) in which galaxies become increasingly red due to dust and age as their star formation rate (SFR) increases. Second, the two radio galaxies are among the most massive objects (log[M*/Msun]~11) known to exist at z~4-5, and are extremely rare based on the low number density of such objects as estimated from the ~25x larger area GOODS survey. We suggest that the presence of these massive galaxies and supermassive black holes has been boosted through rapid accretion of gas or merging inside overdense regions. Third, the total stellar mass found in the z=4 ``proto-cluster TN1338 accounts for <30% of the stellar mass on the cluster red sequence expected to have formed at z>4, based on a comparison with the massive X-ray cluster Cl1252 at z=1.2. Although future near-infrared observations should determine whether any massive galaxies are currently being missed, one possible explanation for this mass difference is that TN1338 evolves into a smaller cluster than Cl1252. This raises the interesting question of whether the most massive protocluster regions at z>4 remain yet to be discovered.
We carried out a target survey for Lyman break galaxies (LBGs) and Lyman alpha emitters (LAEs) around QSO SDSS J0211-0009 at z=4.87. The deep and wide broadband and narrowband imaging simultaneously revealed the perspective structure of these two high-z populations. The LBGs without Ly-alpha emission form a filamentary structure including the QSO, while the LAEs are distributed around the QSO but avoid it within a distance of ~4.5Mpc. On the other hand, we serendipitously discovered a protocluster with a significant concentration of LBGs and LAEs where no strongly UV ionizing source such as a QSO or radio galaxy is known to exist. In this cluster field, two populations are spatially cross-correlated with each other. The relative spatial distribution of LAEs to LBGs is in stark contrast between the QSO and the cluster fields. We also found a weak trend showing that the number counts based on Ly-alpha and UV continuum fluxes of LAEs in the QSO field are slightly lower than in the cluster field, whereas the number counts of LBGs are almost consistent with each other. The LAEs avoid the nearby region around the QSO where the local UV background radiation could be ~100 times stronger than the average for the epoch. The clustering segregation between LBGs and LAEs seen in the QSO field could be due to either enhanced early galaxy formation in an overdense environment having caused all the LAEs to evolve into LBGs, or local photoionization due to the strong UV radiation from the QSO effectively causing a deficit in low-mass galaxies like LAEs.
We study the properties of Lyman-alpha emitters (LAEs) and Lyman-break galaxies (LBGs) at z=3-6 using cosmological SPH simulations. We investigate two simple scenarios for explaining the observed Ly-a and rest-frame UV luminosity functions (LFs) of LAEs: (i) the escape fraction scenario, in which the effective escape fraction (including the IGM attenuation) of Ly-a photons is f_Lya ~0.1 (0.15) at z=3 (6), and (ii) the stochastic scenario, in which the fraction of LAEs that are turned on at z=3 (6) is Cstoc ~0.07 (0.2) after correcting for the IGM attenuation. Our comparisons with a number of different observations suggest that the stochastic scenario is preferred over the escape fraction scenario. We find that the mean values of stellar mass, metallicity and black hole mass hosted by LAEs are all smaller in the stochastic scenario than in the escape fraction scenario. In our simulations, the galaxy stellar mass function evolves rapidly, as expected in hierarchical structure formation. However, its evolution is largely compensated by a beginning decline in the specific star formation rate, resulting in little evolution of the rest-frame UV LF from z=6 to 3. The rest-frame UV LF of both LAEs and LBGs at z=3 & 6 can be described well by the stochastic scenario provided the extinction is moderate, E(B-V) ~0.15, for both populations, although our simulation might be overpredicting the number of bright LBGs at z=6. We also discuss the correlation function and bias of LAEs. The Ly-a LFs at z=6 in a field-of-view of 0.2 deg^2 show a significantly larger scatter owing to cosmic variance relative to that in a 1 deg^2 field, and the scatter seen in the current observational estimates of the Ly-a LF can be accounted for by cosmic variance.
We report on the status of large surveys of photometrically selected star forming galaxies at z~3 and z~4, with particular emphasis on both the advantages and the limitations of selecting objects using the ``Lyman break technique. Current results on the luminosity functions, luminosity densities, color distribution, star formation rates, clustering properties, and the differential evolution of the population as a function of redshift are summarized.