Do you want to publish a course? Click here

The Ups and Downs of the Hubble Constant

89   0   0.0 ( 0 )
 Added by Bernd Reindl
 Publication date 2005
  fields Physics
and research's language is English
 Authors G.A. Tammann




Ask ChatGPT about the research

A brief history of the determination of the Hubble constant H_0 is given. Early attempts following Lemaitre (1927) gave much too high values due to errors of the magnitude scale, Malmquist bias and calibration problems. By 1962 most authors agreed that 75< H_0 <130. After 1975 a dichotomy arose with values near 100 and others around 55. The former came from apparent-magnitude-limited samples and were affected by Malmquist bias. New distance indicators were introduced; they were sometimes claimed to yield high values of H_0, but the most recent data lead to H_0 in the 60s, yet with remaining difficulties as to the zero-point of the respective distance indicators. SNe Ia with their large range and very small luminosity dispersion (avoiding Malmquist bias) offer a unique opportunity to determine the large-scale value of H_0. Their maximum luminosity can be well calibrated from 10 SNe Ia in local parent galaxies whose Cepheids have been observed with HST. An unforeseen difficulty - affecting all Cepheid distances - is that their P-L relation varies from galaxy to galaxy, presumably in function of metallicity. A proposed solution is summarized here. The conclusion is that H_0 = 63.2 +/- 1.3 (random) +/- 5.3 (systematic) on all scales. The expansion age becomes then (with Omega_m=0.3, Omega_Lambda=0.7) 15.1 Gyr.



rate research

Read More

Starting from inhomogeneous time scaling and linear decorrelation between successive price returns, Baldovin and Stella recently proposed a way to build a model describing the time evolution of a financial index. We first make it fully explicit by using Student distributions instead of power law-truncated Levy distributions; we also show that the analytic tractability of the model extends to the larger class of symmetric generalized hyperbolic distributions and provide a full computation of their multivariate characteristic functions; more generally, the stochastic processes arising in this framework are representable as mixtures of Wiener processes. The Baldovin and Stella model, while mimicking well volatility relaxation phenomena such as the Omori law, fails to reproduce other stylized facts such as the leverage effect or some time reversal asymmetries. We discuss how to modify the dynamics of this process in order to reproduce real data more accurately.
117 - Neal Jackson 2014
I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give $H_0$ values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68km/s/Mpc and typical errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.
We review more than 10 years of continuous monitoring of accreting X-ray pulsars with the all-sky Gamma-ray Burst Monitor (GBM) aboard the Fermi Gamma-ray Space Telescope. Our work includes data from the start of GBM operations in August 2008, through to November 2019. Pulsations from 39 accreting pulsars are observed over an energy range of $10-50,$keV by GBM. The GBM Accreting Pulsars Program (GAPP) performs data reduction and analysis for each accreting pulsar and makes histories of the pulse frequency and pulsed flux publicly available. We examine in detail the spin histories, outbursts and torque behaviors of the persistent and transient X-ray pulsars observed by GBM. The spin period evolution of each source is analyzed in the context of disk-accretion and quasi-spherical settling accretion driven torque models. Long-term pulse frequency histories are also analyzed over the GBM mission lifetime and compared to those available from the previous BATSE all-sky monitoring mission, revealing previously unnoticed episodes in some of the analyzed sources (such as a torque reversal in 2S 1845-024). We obtain new, or update known, orbital solutions for three sources. Our results demonstrate the capabilities of GBM as an excellent instrument for monitoring accreting X-ray pulsars and its important scientific contribution to this field.
483 - H. Arp 2007
Dark energy is inferred from a Hubble expansion which is slower at epochs which are earlier than ours. But evidence reviewed here shows $H_0$ for nearby galaxies is actually less than currently adopted and would instead require {it deceleration} to reach the current value. Distances of Cepheid variables in galaxies in the Local Supercluster have been measured by the Hubble Space Telescope and it is argued here that they require a low value of $H_0$ along with redshifts which are at least partly intrinsic. The intrinsic component is hypothesized to be a result of the particle masses increasing with time. The same considerations apply to Dark Matter. But with particle masses growing with time, the condensation from plasmoid to proto galaxy not only does away with the need for unseen ``dark matter but also explains the intrinsic (non-velocity) redshifts of younger matter.
367 - Brad K. Gibson 2000
Based upon multi-epoch Hubble Space Telescope observations, we present the discovery of sixteen high-quality Cepheid candidates in NGC 4527. Corrected for metallicity effects in the Cepheid period-luminosity relation, we derive a distance, including both random (r) and systematic (s) uncertainties, of 13.0+/-0.5(r)+/-1.2(s) Mpc. Our result is then used to provide a calibration of the peak B-, V-, and I-band luminosities of the peculiar Type Ia supernova SN 1991T, a resident of NGC 4527. Despite its documented spectroscopic peculiarities, after correction for the decline rate-luminosity correlation the corrected peak luminosity is indistinguishable from those of so-called ``normal Type Ia SNe. With now nine local calibrators at our disposal, we determine a robust value for the Hubble Constant of H_0=73+/-2(r)+/-7(s) km/s/Mpc.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا