Do you want to publish a course? Click here

Adaptive Optics Concept For Multi-Objects 3D Spectroscopy on ELTs

268   0   0.0 ( 0 )
 Added by Benoit Neichel
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we present a first comparison of different Adaptive Optics (AO) concepts to reach a given scientific specification for 3D spectroscopy on Extremely Large Telescope (ELT). We consider that a range of 30%-50% of Ensquarred Energy (EE) in H band (1.65um) and in an aperture size from 25 to 100mas is representative of the scientific requirements. From these preliminary choices, different kinds of AO concepts are investigated : Ground Layer Adaptive Optics (GLAO), Multi-Object AO (MOAO) and Laser Guide Stars AO (LGS). Using Fourier based simulations we study the performance of these AO systems depending on the telescope diameter.



rate research

Read More

133 - Guia Pastorini 2006
The very high spatial resolution provided by Adaptive Optics assisted spectroscopic observations at 8m-class telescopes (e.g. with SINFONI at the VLT) will allow to greatly increase the number of direct black hole (BH) mass measurements which is currently very small. This is a fundamental step to investigate the tight link between galaxy evolution and BH growth, revealed by the existing scaling relations between $M_{BH}$ and galaxy structural parameters. I present preliminary results from SINFONI K-band spectroscopic observations of a sample of 5 objects with $M_{BH}$ measurements obtained with the Reverberation Mapping (RM) technique. This technique is the starting point to derive the so-called virial $M_{BH}$ estimates, currently the only way to measure $M_{BH}$ at high redshift. Our goal is to assess the reliability of RM by measuring $M_{BH}$ with both gas and stellar kinematical methods and to investigate whether active galaxies follow the same $M_{BH}$-galaxy correlations as normal ones.
The Kepler mission has revolutionized our understanding of exoplanets, but some of the planet candidates identified by Kepler may actually be astrophysical false positives or planets whose transit depths are diluted by the presence of another star. Adaptive optics images made with ARIES at the MMT of 87 Kepler Objects of Interest place limits on the presence of fainter stars in or near the Kepler aperture. We detected visual companions within 1 for five stars, between 1 and 2 for seven stars, and between 2 and 4 for 15 stars. For those systems, we estimate the brightness of companion stars in the Kepler bandpass and provide approximate corrections to the radii of associated planet candidates due to the extra light in the aperture. For all stars observed, we report detection limits on the presence of nearby stars. ARIES is typically sensitive to stars approximately 5.3 Ks magnitudes fainter than the target star within 1 and approximately 5.7 Ks magnitudes fainter within 2, but can detect stars as faint as delta Ks = 7.5 under ideal conditions.
MAORY is the adaptive optics module for ELT providing two gravity invariant ports with the same optical quality for two different client instruments. It enable high angular resolution observations in the near infrared over a large field of view (~1 arcmin2 ) by real time compensation of the wavefront distortions due to atmospheric turbulence. Wavefront sensing is performed by laser and natural guide stars while the wavefront sensor compensation is performed by an adaptive deformable mirror in MAORY which works together with the telescopes adaptive and tip tilt mirrors M4 and M5 respectively.
60 - A. Chalabaev 2003
The GraF instrument using a Fabry-Perot interferometer cross-dispersed with a grating was one of the first integral-field and long-slit spectrographs built for and used with an adaptive optics system. We describe its concept, design, optimal observational procedures and the measured performances. The instrument was used in 1997-2001 at the ESO 3.6 m telescope equipped with ADONIS adaptive optics and SHARPII+ camera. The operating spectral range was 1.2 - 2.5 microns. We used the spectral resolution from 500 to 10 000 combined with the angular resolution of 0.1 - 0.2. The quality of GraF data is illustrated by the integral field spectroscopy of the complex 0.9 x 0.9 central region of Eta Car in the 1.7 microns spectral range at the limit of spectral and angular resolutions.
We overview the current status of photometric analyses of images collected with Multi Conjugate Adaptive Optics (MCAO) at 8-10m class telescopes that operated, or are operating, on sky. Particular attention will be payed to resolved stellar population studies. Stars in crowded stellar systems, such as globular clusters or in nearby galaxies, are ideal test particles to test AO performance. We will focus the discussion on photometric precision and accuracy reached nowadays. We briefly describe our project on stellar photometry and astrometry of Galactic globular clusters using images taken with GeMS at the Gemini South telescope. We also present the photometry performed with DAOPHOT suite of programs into the crowded regions of these globulars reaching very faint limiting magnitudes Ks ~21.5 mag on moderately large fields of view (~1.5 arcmin squared). We highlight the need for new algorithms to improve the modeling of the complex variation of the Point Spread Function across the field of view. Finally, we outline the role that large samples of stellar standards plays in providing a detailed description of the MCAO performance and in precise and accurate colour{magnitude diagrams.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا