No Arabic abstract
INTEGRAL and RXTE performed three simultaneous observations of the nearby radio galaxy Cen A in 2003 March, 2004 January, and 2004 February with the goals of investigating the geometry and emission processes via the spectral/temporal variability of the X-ray/low energy gamma ray flux, and intercalibration of the INTEGRAL instruments with respect to those on RXTE. When combined with earlier archival RXTE results, we find the power law continuum flux and the line-of-sight column depth varied independently, and the iron line flux was essentially unchanging. Taking X-ray spectral measurements from satellite missions since 1970 into account, we discover a variability in the column depth between 1.0x10^23 cm^-2 and 1.5x10^23 cm^-2, and suggest that variations in the edge of a warped accretion disk viewed nearly edge-on might be the cause.
We report on the analysis from ~110 ks of X-ray observations of Centaurus A carried out with the Proportional Counter Array (PCA) and the High Energy X-ray Timing Experiment (HEXTE) instruments on Rossi X-ray Timing Explorer (RXTE) during three monitoring campaigns over the last 4 years (10 ks in 1996, 74 ks in 1998, and 25 ks in 2000). The joint PCA/HEXTE X-ray spectrum can be well described by a heavily absorbed power law with photon index 1.8 and a narrow iron line due to fluorescence of cold matter. The measured column depth decreased by about 30% between 1996 and 2000, while the detected 2-10 keV continuum flux remained constant between 1996 and 1998, but increased by 60% in 2000. Since in all three observations the iron line flux did not vary, a corresponding decrease in equivalent width was noted. No appreciable evidence for a reflection continuum in the spectrum was detected. We present the interpretation of the iron line strength through Monte Carlo computations of various geometries. No significant temporal variability was found in Cen A at time scales from days to tens of minutes.
To probe further the possible nature of the unidentified source IGR J17098-3628, we have carried out a detailed analysis of its long-term time variability as monitored by RXTE/ASM, and of its hard X-ray properties as observed by INTEGRAL. INTEGRAL has monitored this sky region over years and significantly detected IGR J17098-3628 only when the source was in this dubbed active state. In particular, at $ge$ 20 keV, IBIS/ISGRI caught an outburst in March 2005, lasting for $sim$5 days with detection significance of 73$sigma$ (20-40 keV) and with the emission at $< $200 keV. The ASM observations reveal that the soft X-ray lightcurve shows a similar outburst to that detected by INTEGRAL, however the peak of the soft X-ray lightcurve either lags, or is preceded by, the hard X-ray ($>$20 keV) outburst by $sim$2 days. This resembles the behavior of X-ray novae like XN 1124-683, hence it further suggests a LMXB nature for IGR J17098-3628. While the quality of the ASM data prevents us from drawing any definite conclusions, these discoveries are important clues that, coupled with future observations, will help to resolve the as yet unknown nature of IGR J17098-3628.
We present results of spectral and timing analysis of the fast X-ray transient XTE J1901+014 based on data of the RXTE and INTEGRAL observatories. With the INTEGRAL/ISGRI the source was detected at a significance level of 20$sigma$ with the persistent flux of $sim$2.7 mCrab in a 17-100 keV energy band in 2003-2004 (during long observations of the Sagittarius arm region). We added the RXTE/PCA (3-20 keV) data obtained in 1998 to the INTEGRAL/ISGRI data to build the broadband spectrum of the source in a quiescent state. It was found that the spectrum can be well approximated by a simple powerlaw with a photon index of $sim$2.15. From timing analysis we found short time scale aperiodic variations which can be connected with instabilities in the accretion flow.
We present results of the monitoring of the black hole candidate 1E 1740.7-2942 with INTEGRAL, in combination with simultaneous observations by RXTE. We concentrate on broad-band spectra from INTEGRAL/IBIS and RXTE/PCA instruments. During our observations, the source spent most of its time in the canonical low/hard state with the measured flux variation within a factor of two. In 2003 September the flux started to decline and in 2004 February it was below the sensitivity level of the INTEGRAL and RXTE instruments. Notably, during the decline phase the spectrum changed, becoming soft and typical of black hole binaries in the intermediate/soft state.
We analyse emph{INTEGRAL} (between 2005 October and 2007 November) and emph{RXTE} (between 2007 June and 2011 March) observations of the accretion powered pulsar 4U 1907+09. From emph{INTEGRAL} IBIS-ISGRI and emph{RXTE}-PCA observations, we update pulse period history of the source. We construct power spectrum density of pulse frequencies and find that fluctuations in the pulse frequency derivatives are consistent with the random walk model with a noise strength of $1.27times10^{-21}$ Hz s$^{-2}$. From the X-ray spectral analysis of emph{RXTE}-PCA observations, we find that Hydrogen column density is variable over the binary orbit, tending to increase just after the periastron passage. We also show that the X-ray spectrum gets hardened with decreasing X-ray flux. We discuss pulse-to-pulse variability of the source near dipping ingress and egress. We find that the source more likely undergoes in dipping states after apastron until periastron when the accretion from clumpy wind might dominate so that occasional transitions to temporary propeller state might occur.