Do you want to publish a course? Click here

Optical/near-infrared colours of early-type galaxies and constraints on their star formation histories

68   0   0.0 ( 0 )
 Added by Maurizio Salaris
 Publication date 2005
  fields Physics
and research's language is English
 Authors P. A. James




Ask ChatGPT about the research

(abridged) We introduce and discuss the properties of a theoretical (B-K)-(J-K) integrated colour diagram for single-age, single-metallicity stellar populations. This combination of integrated colours is able to largely disentangle the well known age-metallicity degeneracy when the age of the population is greater than ~300 Myr. We discuss in detail the effect on this colour-colour diagram of alpha-enhanced metal abundance ratios, the presence of blue horizontal branch stars unaccounted for in the theoretical calibration, and of statistical colour fluctuations in low mass stellar systems. In the case of populations with multiple stellar generations, the luminosity-weighted mean age obtained from this diagram is shown to be heavily biased towards the youngest stellar components. We apply this method to several datasets for which optical and near-IR photometry are available in the literature. For the two Local Group dwarf galaxies NGC185 and NGC6822, the mean ages derived from the integrated colours are consistent with the star formation histories inferred independently from photometric observations of their resolved stellar populations. A sample of bright field and Virgo cluster elliptical galaxies is found to exhibit a range of luminosity-weighted mean ages from 3 to 14 Gyr, with a mean of 8 Gyr, independent of environment, and mean metallicities at or just above the solar value. Colour gradients are found in all of the galaxies studied, in the sense that central regions are redder. Aperture data for five Virgo early-type dwarf galaxies show that these galaxies appear to be shifted to lower mean metallicities and lower mean ages (range 1 to 6 Gyr) than their higher luminosity counterparts.



rate research

Read More

90 - Naoyuki Tamura 2004
We performed K band surface photometry for luminous early-type galaxies in a nearby rich cluster ABELL 2199. Combining it with B and R band surface photometry, radial variations of B-R and R-K colours in the galaxies were investigated. It is found that the inner regions of the galaxies are redder in both of B-R and R-K colours. Comparing the radial variations of both of the colours with predictions of Simple Stellar Population (SSP) models for a range of ages and metallicities, it is suggested that the cluster ellipticals have negative metallicity gradients but their age gradients are consistent with zero, although our sample is small; the typical metallicity gradient is estimated to be -0.16+- 0.09 in dlogZ/dlogr, while the age gradient is estimated to be -0.10 +- 0.14 in dlog(age)/dlogr. Considering that similar results have also been derived in the other recent studies using samples of ellipticals in the Coma cluster and less dense environments, it seems that there is no strong dependence on galaxy environment in radial gradient of stellar population in elliptical galaxy.
168 - Ignacio Ferreras 2010
Differences in the stellar populations of galaxies can be used to quantify the effect of environment on the star formation history. We target a sample of early-type galaxies from the Sloan Digital Sky Survey in two different environmental regimes: close pairs and a general sample where environment is measured by the mass of their host dark matter halo. We apply a blind source separation technique based on principal component analysis, from which we define two parameters that correlate, respectively, with the average stellar age (eta) and with the presence of recent star formation (zeta) from the spectral energy distribution of the galaxy. We find that environment leaves a second order imprint on the spectra, whereas local properties - such as internal velocity dispersion - obey a much stronger correlation with the stellar age distribution.
We present Keck-MOSFIRE H and K spectra for a sample of 24 candidate quiescent galaxies (QGs) at 3<z<4, identified from UVJ colors and photometric redshifts in the ZFOURGE and 3DHST surveys. We obtain spectroscopic redshifts for half of the sample, using absorption or emission lines, and confirm the high accuracy of the photometric redshifts with a median error of 1.2%. Two galaxies turn out to be dusty objects at lower redshifts (z<2.5), and are the only two detected in the sub-mm with ALMA. High equivalent-width [OIII] was observed in two galaxies, contributing up to 30% of the K-band flux and mimicking the colors of an old stellar population. This implies a failure rate of only 20% for the UVJ selection at these redshifts. Balmer absorption was identified in 4 of the brighest galaxies, confirming the absence of OB stars. Modeling all QGs with a wide range of star-formation histories, we find sSFR a factor of 10 below the main sequence (MS) for all but one galaxy, and less than 0.01 Gyr$^{-1}$ for half of the sample. This is consistent with the H$beta$ and [OII] luminosities, and the ALMA non-detections. We then find that these QGs have quenched on average 300 Myr before observation, between z=3.5 and 5, and that they formed at z~5.5 with a mean SFR~300 Msun/yr. Considering an alternative selection of QGs based solely on the sSFR from SED modeling, we find that galaxies a factor 10 below the MS are 40% more numerous than UVJ-quiescent galaxies, implying that the UVJ selection is pure but incomplete. Current models fail at reproducing our observations and underestimate either the number density of QGs by more than an order of magnitude or the duration of their quiescence by a factor two. Overall, these results confirm the existence of an unexpected population of QGs at z>3, and offer the first insights on their formation history. [abridged]
In order to study early type galaxies in their simplest environments, we have constructed a well-defined sample of 30 isolated galaxies. The sample contains all RC3 early-type galaxies with no other cataloged galaxy with known redshift lying within a projected radius of 1 (h_100)^{-1} Mpc and =/- 1000 km/s (where we use the recessional velocities in the RC3). We have obtained optical and near-infrared images of 23 of the galaxies and of a comparison sample of 13 early-type galaxies in X-ray detected poor groups of galaxies. We have applied the techniques of unsharp masking, galaxy model division, and color maps to search for morphological features that might provide clues to the evolution of these galaxies. Evidence for dust features is found in approximately 75% of both the isolated and group galaxies (17 of 22 and 9 of 12, respectively). However, shells or tidal features are much more prevalent in our isolated sample than in our group sample (9 of 22 or 41% versus 1 of 12 or 8%, respectively). The isolation and colors of these shell galaxies make it unlikely that tidal interactions or asymmetric star formation are the causes of such features. One model that is not ruled out is that mergers produce the shells. If shells and dust are both merger signatures, the absence of shells in group ellipticals implies that shells: 1) form more easily, 2) are younger, and/or 3) are longer-lived in isolated environments.
We present the analysis of the integrated spectral energy distribution (SED) from the ultraviolet (UV) to the far-infrared and H$alpha$ of a sample of 29 local systems and individual galaxies with infrared (IR) luminosities between 10^11 Lsun and 10^11.8 Lsun. We have combined new narrow-band H$alpha$+[NII] and broad-band g, r optical imaging taken with the Nordic Optical Telescope (NOT), with archival GALEX, 2MASS, Spitzer, and Herschel data. The SEDs (photometry and integrated H$alpha$ flux) have been fitted with a modified version of the MAGPHYS code using stellar population synthesis models for the UV-near-IR range and thermal emission models for the IR emission taking into account the energy balance between the absorbed and re-emitted radiation. From the SED fits we derive the star-formation histories (SFH) of these galaxies. For nearly half of them the star-formation rate appears to be approximately constant during the last few Gyrs. In the other half, the current star-formation rate seems to be enhanced by a factor of 3-20 with respect to that occured ~1 Gyr ago. Objects with constant SFH tend to be more massive than starbursts and they are compatible with the expected properties of a main-sequence (M-S) galaxy. Likewise, the derived SFHs show that all our objects were M-S galaxies ~1 Gyr ago with stellar masses between 10^10.1 and 10^11.5 Msun. We also derived from our fits the average extinction (A_v=0.6-3 mag) and the polycyclic aromatic hydrocarbons (PAH) luminosity to L(IR) ratio (0.03-0.16). We combined the A_v with the total IR and H$alpha$ luminosities into a diagram which can be used to identify objects with rapidly changing (increasing or decreasing) SFR during the last 100 Myr.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا