Do you want to publish a course? Click here

Bright X-ray Transients in M31: 2004 July XMM-Newton Observations

59   0   0.0 ( 0 )
 Added by Sergey Trudolyubov
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of X-ray observations of four bright transients sources detected in the July 2004 XMM-Newton observations of the central bulge of M31. Two X-ray sources, XMMU J004315.5+412440 and XMMU J004144.7+411110, were discovered for the first time. Two other sources, CXOM31 J004309.9+412332 and CXOM31 J004241.8+411635, were previously detected by Chandra. The properties of the sources suggest their identification with accreting binary systems in M31. The X-ray spectra and variability of two sources, XMMU J004144.7+411110 and CXOM31 J004241.8+411635, are similar to that of the Galactic black hole transients, making them a good black hole candidates. The X-ray source XMMU J004315.5+412440 demonstrates a dramatic decline of the X-ray flux on a time scale of three days, and a remarkable flaring behavior on a short time scales. The X-ray data on XMMU J004315.5+412440 and CXOM31 J004309.9+412332 suggest that they can be either black hole or neutron star systems. Combining the results of 2000-2004 XMM observations of M31, we estimate a total rate of the bright transient outbursts in the central region of M31 to be 6-12 per year, in agreement with previous studies.



rate research

Read More

Power density spectra (PDS) that are characteristic of low mass X-ray binaries (LMXBs) have been previously reported for M31 X-ray sources observed by XMM-Newton. However, we have recently discovered that these PDS are false positives resulting from the improper manipulation of non-simultaneous lightcurves. The lightcurves produced by the XMM-Newton Science Analysis Software (SAS) are non-synchronised by default. This affects not only the combination of lightcurves from the three EPIC detectors (MOS1, MOS2 and pn), but also background subtraction in the same CCD. It is therefore imperative that all SAS-generated lightcurves are synchronised by time filtering, even if the whole observation is to be used. We combined simulated lightcurves at various intensities with various offsets and found that the artefact is more dependent on the offset than the intensity. While previous timing results from M31 have been proven wrong, and also the broken power law PDS in NGC 4559 ULX-7, XMM-Newton was able to detect aperiodic variability in just 3 ks of observations of NGC 5408 ULX1. Hence XMM-Newton remains a viable tool for analysing variability in extra-galactic X-ray sources.
We present the results of the ongoing XMM-Newton survey of M31. 17 X-ray sources detected in the survey have bright radio counterparts, and 15 X-ray sources coincide with SNR candidates from optical and radio surveys. 15 out of 17 sources with radio counterparts, not SNR candidates, have spectral properties similar to that observed for background radio galaxies/quasars or Crab-like supernova remnants located in M31. The remaining two sources, XMMU J004046.8+405525 and XMMU J004249.1+412407, have soft X-ray spectra, and are associated with spatially resolved H-alpha emission regions, which makes them two new SNR candidates in M31. The observed absorbed X-ray luminosities of SNR candidates in our sample range from 1e35 to 5e36 ergs/s, assuming the distance of 760 kpc. Most of the SNR candidates detected in our survey have soft X-ray spectra. The spectra of the brightest sources show presence of emission lines and can be fit by thermal plasma models with kT~0.1-0.4 keV. The results of spectral fitting of SNR candidates suggest that most of them should be located in a relatively low density regions. We show that X-ray color-color diagrams can be useful tool for distinguishing between intrinsically hard background radio sources and Crab-like SNR and thermal SNR in M31 with soft spectra.
(Abridged) We present the results of M31 globular cluster (GC) X-ray source survey, based on the data of XMM-Newton and Chandra observations covering ~6100 sq.arcmin of M31. We detected 43 X-ray sources coincident with globular cluster candidates from optical surveys. The estimated isotropic X-ray luminosities of GC sources lie between ~10e35 and ~10e39 erg/s in the 0.3 - 10 keV energy band. The spectral properties and variability of M31 GC X-ray sources are consistent with that derived for the LMXBs in the bulges of M31 and Milky Way. We found that ~80% of the M31 GC sources with multiple flux measurements available show significant variability on a time scales from days to years. The X-ray luminosity function of GC sources is found to be significantly different from that of the point sources in the bulge and disk of M31 and that of the Galactic GC X-ray sources. GC sources make dominant contribution to the bright source counts in the areas of M31 covered by the survey: ~40% of the total number of sources with luminosities above 10e37 ergs/s reside in GCs with fraction of GC sources rising to 67-90% for the luminosities above 10e38 ergs/s. The contribution of the GC sources to the total number of bright sources found in M31 is much higher than in the Milky Way galaxy, but surprisingly close to that of the early-type galaxies. The brightest M31 GC sources tend to reside at large galactocentric distances outside the central bulge. We found that globular clusters hosting bright X-ray sources are optically brighter and more metal rich than the rest of M31 globular clusters. The brightest sources with luminosities above ~10e38 ergs/s show tendency to reside in more metal poor clusters.
207 - M. Galeazzi , A. Gupta , K. Covey 2006
We analyzed two XMM-Newton observations in the direction of the high density, high latitude, neutral hydrogen cloud MBM20 and of a nearby low density region that we called the Eridanus hole. The cloud MBM20 is at a distance evaluated between 100 and 200 pc from the Sun and its density is sufficiently high to shield about 75% of the foreground emission in the 3/4 keV energy band.The combination of the two observations makes possible an evaluation of the OVII and OVIII emission both for the foreground component due to the Local Bubble,and the background one, due primary to the galactic halo.The two observations are in good agreement with each other and with ROSAT observations of the same part of the sky and the OVII and OVIII fluxes are OVII=3.89+/-0.56 photons cm^-2 s^-1 sr^-1, OVIII=0.68+/-0.24 photons cm^-2 s^-1 sr^-1 for MBM20 and OVII=7.26+/-0.34 photons cm^-2 s^-1 sr^-1,OVIII=1.63+/-0.17 photons cm^-2 s^-1 sr^-1 for the Eridanus hole. The spectra are in agreement with a simple three component model, one unabsorbed and one absorbed plasma component, and a power law, without evidence for any strong contamination from ion exchange in the solar system. Assuming that the two plasma components are in thermal equilibrium we obtain a temperature of 0.096 keV for the foreground component and 0.197 keV for the background one. Assuming the foreground component is due solely to Local Bubble emission we obtain a lower and upper limit for the plasma density of 0.0079 cm^-3 and 0.0095 cm^-3 and limits of 16,200 cm^-3 K and 19,500 cm^-3 K for the plasma pressure, in good agreement with theoretical predictions. Similarly, assuming that the absorbed plasma component is due to Galactic halo emission, we obtain a plasma density ranging from 0.0009 cm^-3 to 0.0016 cm^-3, and a pressure ranging from 3.0*10^3 to 6.7*10^3 cm^-3 K.
We present the results of two XMM-Newton observations of Jupiter carried out in 2003 for 100 and 250 ks (or 3 and 7 planet rotations) respectively. X-ray images from the EPIC CCD cameras show prominent emission from the auroral regions in the 0.2 - 2.0 keV band: the spectra are well modelled by a combination of emission lines, including most prominently those of highly ionised oxygen (OVII and OVIII). In addition, and for the first time, XMM-Newton reveals the presence in both aurorae of a higher energy component (3 - 7 keV) which is well described by an electron bremsstrahlung spectrum. This component is found to be variable in flux and spectral shape during the Nov. 2003 observation, which corresponded to an extended period of intense solar activity. Emission from the equatorial regions of Jupiters disk is also observed, with a spectrum consistent with that of solar X-rays scattered in the planets upper atmosphere. Jupiters X-rays are spectrally resolved with the RGS which clearly separates the prominent OVII contribution of the aurorae from the OVIII, FeXVII and MgXI lines, originating in the low-latitude disk regions of the planet.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا