No Arabic abstract
We report first-epoch circular polarization results for 133 active galactic nuclei in the MOJAVE program to monitor the structure and polarization of a flux limited sample of extra-galactic radio jets with the VLBA at 15 GHz. We found strong circular polarization ($geq 0.3$%) in approximately 15% of our sample. The circular polarization was usually associated with jet cores; however, we did find a few strong jet components to be circularly polarized. The levels of circular polarization were typically in the range of $0.3-0.5$% of the local Stokes-$I$. We found no strong correlations between fractional circular polarization of jet cores and source type, redshift, EGRET detections, linear polarization, or other observed parsec-scale jet properties. There were differences between the circular-to-linear polarization ratios of two nearby galaxies versus more distant quasars and BL Lac objects. We suggest this is because the more distant sources either have (1) less depolarization of their linear polarization, and/or (2) poorer effective linear resolution and therefore their VLBA cores apparently contain a larger amount of linearly polarized jet emission. The jet of 3C 84 shows a complex circular polarization structure, similar to observations by Homan & Wardle five years earlier; however, much of the circular polarization seems to have moved, consistent with a proper motion of 0.06$c$. The jet of 3C 273 also has several circularly polarized components, and we find their fractional circular polarization decreases with distance from the core.
We present images from a long term program (MOJAVE: Monitoring of Jets in AGN with VLBA Experiments) to survey the structure and evolution of parsec-scale jet phenomena associated with bright radio-loud active galaxies in the northern sky. The observations consist of 2424 15 GHz VLBA images of a complete flux-density limited sample of 135 AGN above declination -20 degrees, spanning the period 1994 August to 2007 September. These data were acquired as part of the MOJAVE and 2 cm Survey programs, and from the VLBA archive. The sample selection criteria are based on multi-epoch parsec-scale (VLBA) flux density, and heavily favor highly variable and compact blazars. The sample includes nearly all the most prominent blazars in the northern sky, and is well-suited for statistical analysis and comparison with studies at other wavelengths. Our multi-epoch and stacked-epoch images show 94% of the sample to have apparent one-sided jet morphologies, most likely due to the effects of relativistic beaming. Of the remaining sources, five have two-sided parsec-scale jets, and three are effectively unresolved by the VLBA at 15 GHz, with essentially all of the flux density contained within a few tenths of a milliarcsecond.
We discuss acceleration measurements for a large sample of extragalactic radio jets from the MOJAVE program which studies the parsec-scale jet structure and kinematics of a complete, flux-density-limited sample of Active Galactic Nuclei (AGN). Accelerations are measured from the apparent motion of individual jet features or components which may represent patterns in the jet flow. We find that significant accelerations are common both parallel and perpendicular to the observed component velocities. Parallel accelerations, representing changes in apparent speed, are generally larger than perpendicular acceleration that represent changes in apparent direction. The trend for larger parallel accelerations indicates that a significant fraction of these changes in apparent speed are due to changes in intrinsic speed of the component rather than changes in direction to the line of sight. We find an overall tendency for components with increasing apparent speed to be closer to the base of their jets than components with decreasing apparent speed. This suggests a link between the observed pattern motions and the underlying flow which, in some cases, may increase in speed close to the base and decrease in speed further out; however, common hydro-dynamical processes for propagating shocks may also play a role. About half of the components show non-radial motion, or a misalignment between the components structural position angle and its velocity direction, and these misalignments generally better align the component motion with the downstream emission. Perpendicular accelerations are closely linked with non-radial motion. When observed together, perpendicular accelerations are usually in the correct direction to have caused the observed misalignment.
We present 5321 milliarcsecond-resolution total intensity and linear polarization maps of 437 active galactic nuclei (AGNs) obtained with the VLBA at 15 GHz as part of the MOJAVE survey, and also from the NRAO data archive. The former is a long-term program to study the structure and evolution of powerful parsec-scale outflows associated with AGNs. The targeted AGNs are drawn from several flux-limited radio and gamma-ray samples, and all have correlated VLBA flux densities greater than about 50 mJy at 15 GHz. Approximately 80% of these AGNs are associated with gamma-ray sources detected by the Fermi LAT instrument. The vast majority were observed with the VLBA on 5 to 15 occasions between 1996 January 19 and 2016 December 26, at intervals ranging from a month to several years, with the most typical sampling interval being six months. A detailed analysis of the linear and circular polarization evolution of these AGN jets are presented in other papers in this series.
We discuss the jet kinematics of a complete flux-density-limited sample of 135 radio-loud active galactic nuclei (AGN) resulting from a 13 year program to investigate the structure and evolution of parsec-scale jet phenomena. Our analysis is based on new 2 cm Very Long Baseline Array (VLBA) images obtained between 2002 and 2007, but includes our previously published observations made at the same wavelength, and is supplemented by VLBA archive data. In all, we have used 2424 images spanning the years 1994-2007 to study and determine the motions of 526 separate jet features in 127 jets. The data quality and temporal coverage (a median of 15 epochs per source) of this complete AGN jet sample represents a significant advance over previous kinematics surveys. In all but five AGNs, the jets appear one-sided, most likely the result of differential Doppler boosting. In general the observed motions are directed along the jet ridge line, outward from the optically thick core feature. We directly observe changes in speed and/or direction in one third of the well-sampled jet components in our survey. While there is some spread in the apparent speeds of separate features within an individual jet, the dispersion is about three times smaller than the overall dispersion of speeds among all jets. This supports the idea that there is a characteristic flow that describes each jet, which we have characterized by the fastest observed component speed. The observed maximum speed distribution is peaked at ~10c, with a tail that extends out to ~50c. This requires a distribution of intrinsic Lorentz factors in the parent population that range up to ~50. We also note the presence of some rare low-pattern speeds or even stationary features in otherwise rapidly flowing jets... (abridged)