No Arabic abstract
Using high resolution DM simulations we study the shape of dark matter halos. Halos become more spherical with decreasing mass. This trend is even more pronounced for the inner part of the halo. Angular momentum and shape are correlated. The angular momenta of neighboring halos are correlated.
We examine the quenched fraction of central and satellite galaxies as a function of galaxy stellar mass, halo mass, and the matter density of their large scale environment. Matter densities are inferred from our ELUCID simulation, a constrained simulation of local Universe sampled by SDSS, while halo masses and central/satellite classification are taken from the galaxy group catalog of Yang et al. The quenched fraction for the total population increases systematically with the three quantities. We find that the `environmental quenching efficiency, which quantifies the quenched fraction as function of halo mass, is independent of stellar mass. And this independence is the origin of the stellar mass-independence of density-based quenching efficiency, found in previous studies. Considering centrals and satellites separately, we find that the two populations follow similar correlations of quenching efficiency with halo mass and stellar mass, suggesting that they have experienced similar quenching processes in their host halo. We demonstrate that satellite quenching alone cannot account for the environmental quenching efficiency of the total galaxy population and the difference between the two populations found previously mainly arises from the fact that centrals and satellites of the same stellar mass reside, on average, in halos of different mass. After removing these halo-mass and stellar-mass effects, there remains a weak, but significant, residual dependence on environmental density, which is eliminated when halo assembly bias is taken into account. Our results therefore indicate that halo mass is the prime environmental parameter that regulates the quenching of both centrals and satellites.
We use Fabry-Perot Halpha spectroscopy, complemented with published HI radio synthesis observations to derive high resolution rotation curves of spiral galaxies. We investigate precisely their inner mass distribution and compare it to CDM simulations predictions. Having verified the existence of the so-called core-cusp problem, we find that the dark halo density inner slope is related to the galaxy masses. Dwarf galaxies with V_max < 100 km/s have halo density inner slope 0 < gamma < 0.7 while galaxies with V_max > 100 km/s are best fitted by gamma >= 1.
A large variance exists in the amplitude of the Stellar Mass - Halo Mass (SMHM) relation for group and cluster-size halos. Using a sample of 254 clusters, we show that the magnitude gap between the brightest central galaxy (BCG) and its second or fourth brightest neighbor accounts for a significant portion of this variance. We find that at fixed halo mass, galaxy clusters with a higher magnitude gap have a higher BCG stellar mass. This relationship is also observed in semi-analytic representations of low-redshift galaxy clusters in simulations. This SMHM-magnitude gap stratification likely results from BCG growth via hierarchical mergers and may link assembly of the halo with the growth of the BCG. Using a Bayesian model, we quantify the importance of the magnitude gap in the SMHM relation using a multiplicative stretch factor, which we find to be significantly non-zero. The inclusion of the magnitude gap in the SMHM relation results in a large reduction in the inferred intrinsic scatter in the BCG stellar mass at fixed halo mass. We discuss the ramifications of this result in the context of galaxy formation models of centrals in group and cluster-sized halos.
We propose DOPS, a fast single-stage 3D object detection method for LIDAR data. Previous methods often make domain-specific design decisions, for example projecting points into a bird-eye view image in autonomous driving scenarios. In contrast, we propose a general-purpose method that works on both indoor and outdoor scenes. The core novelty of our method is a fast, single-pass architecture that both detects objects in 3D and estimates their shapes. 3D bounding box parameters are estimated in one pass for every point, aggregated through graph convolutions, and fed into a branch of the network that predicts latent codes representing the shape of each detected object. The latent shape space and shape decoder are learned on a synthetic dataset and then used as supervision for the end-to-end training of the 3D object detection pipeline. Thus our model is able to extract shapes without access to ground-truth shape information in the target dataset. During experiments, we find that our proposed method achieves state-of-the-art results by ~5% on object detection in ScanNet scenes, and it gets top results by 3.4% in the Waymo Open Dataset, while reproducing the shapes of detected cars.
We explore the layered palladium oxides La$_2$PdO$_4$, LaPdO$_2$ and La$_4$Pd$_3$O$_8$ via ab initio calculations. La$_2$PdO$_4$, being low spin $d^8$, is quite different from its high spin nickel analog. Hypothetical LaPdO$_2$, despite its $d^9$ configuration, has a paramagnetic electronic structure very different from cuprates. On the other hand, the hypothetical trilayer compound La$_4$Pd$_3$O$_8$ ($d^{8.67}$) is more promising in that its paramagnetic electronic structure is very similar to that of overdoped cuprates. But even in the $d^9$ limit (achieved by partial substitution of La with a 4+ ion), we find that an antiferromagnetic insulating state cannot be stabilized due to the less correlated nature of Pd ions. Therefore, this material, if it could be synthesized, would provide an ideal platform for testing the validity of magnetic theories for high-temperature superconductivity.