Do you want to publish a course? Click here

Infrared power-law galaxies in the Chandra Deep Field South: AGN and ULIRGs

99   0   0.0 ( 0 )
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the nature of a sample of 92 Spitzer/MIPS 24 micron selected galaxies in the CDFS, showing power law-like emission in the Spitzer/IRAC 3.6-8 micron bands. The main goal is to determine whether the galaxies not detected in X-rays (47% of the sample) are part of the hypothetical population of obscured AGN not detected even in deep X-ray surveys. The majority of the IR power-law galaxies are ULIRGs at z>1, and those with LIRG-like IR luminosities are usually detected in X-rays. The optical to IR spectral energy distributions (SEDs) of the X-ray detected galaxies are almost equally divided between a BLAGN SED class (similar to an optically selected QSO) and a NLAGN SED (similar to the BLAGN SED but with an obscured UV/optical continuum). A small fraction of SEDs resemble warm ULIRG galaxies (e.g., Mrk231). Most galaxies not detected in X-rays have SEDs in the NLAGN+ULIRG class as they tend to be optically fainter, and possibly more obscured. Moreover, the IR power-law galaxies have SEDs significantly different from those of high-z (z_sp>1) IR (24 micron) selected and optically bright (VVDS I_AB<=24) star-forming galaxies whose SEDs show a very prominent stellar bump at 1.6 micron. The galaxies detected in X-rays have 2-8 keV rest-frame luminosities typical of AGN. The galaxies not detected in X-rays have global X-ray to mid-IR SED properties that make them good candidates to contain IR bright X-ray absorbed AGN. If all these sources are actually obscured AGN, we would observe a ratio of obscured to unobscured 24 micron detected AGN of 2:1, whereas models predict a ratio of up to 3:1. Additional studies using Spitzer to detect X-ray-quiet AGN are likely to find more such obscured sources.



rate research

Read More

66 - J. L. Donley 2007
We define a sample of 62 galaxies in the Chandra Deep Field-North whose Spitzer IRAC SEDs exhibit the characteristic power-law emission expected of luminous AGN. We study the multiwavelength properties of this sample, and compare the AGN selected in this way to those selected via other Spitzer color-color criteria. Only 55% of the power-law galaxies are detected in the X-ray catalog at exposures of >0.5 Ms, although a search for faint emission results in the detection of 85% of the power-law galaxies at the > 2.5 sigma detection level. Most of the remaining galaxies are likely to host AGN that are heavily obscured in the X-ray. Because the power-law selection requires the AGN to be energetically dominant in the near- and mid-infrared, the power-law galaxies comprise a significant fraction of the Spitzer-detected AGN population at high luminosities and redshifts. The high 24 micron detection fraction also points to a luminous population. The power-law galaxies comprise a subset of color-selected AGN candidates. A comparison with various mid-infrared color selection criteria demonstrates that while the color-selected samples contain a larger fraction of the X-ray luminous AGN, there is evidence that these selection techniques also suffer from a higher degree of contamination by star-forming galaxies in the deepest exposures. Considering only those power-law galaxies detected in the X-ray catalog, we derive an obscured fraction of 68% (2:1). Including all of the power-law galaxies suggests an obscured fraction of < 81% (4:1).
We investigate the use of optical variability to identify and study Active Galactic Nuclei (AGN) in the GOODS-South field. A sample of 22 mid-infrared power law sources and 102 X-ray sources with optical counterparts in the HST ACS images were selected. Each object is classified with a variability significance value related to the standard deviation of its magnitude in five epochs separated by 45-day intervals. The variability significance is compared to the optical, mid-IR, and X-ray properties of the sources. We find that 26% of all AGN candidates (either X-ray- or mid-IR-selected) are optical variables. The fraction of optical variables increases to 51% when considering sources with soft X-ray band ratios. For the mid-IR AGN candidates which have multiwavelength SEDs, we find optical variability for 64% of those classified with SEDs like Broad Line AGNs. While mostly unobscured AGN appear to have the most significant optical variability, some of the more obscured AGNs are also observed as variables. In particular, we find two mid-IR power law-selected AGN candidates without X-ray emission that display optical variability, confirming their AGN nature.
263 - R. Gilli 2004
We investigate the spatial clustering of X-ray selected sources in the two deepest X-ray fields to date, namely the 2Msec Chandra Deep Field North (CDFN) and the 1Msec Chandra Deep Field South (CDFS). The projected correlation function w(r_p), measured on scales ~0.2-10 h^-1 Mpc for a sample of 240 sources with spectroscopic redshift in the CDFN and 124 sources in the CDFS at a median redshift of z~0.8, is used to constrain the amplitude and slope of the real space correlation function xi(r)=(r/r0)^-gamma. The clustering signal is detected at high confidence (>~ 7 sigma) in both fields. The amplitude of the correlation is found to be significantly different in the two fields, the correlation length r0 being 8.6 +- 1.2 h^-1 Mpc in the CDFS and 4.2 +- 0.4 h^-1 Mpc in the CDFN, while the correlation slope gamma is found to be flat in both fields: gamma=1.33 +- 0.11 in the CDFS and gamma=1.42 +- 0.07 in the CDFN (a flat Universe with Omega_m=0.3 and Omega_L=0.7 is assumed; 1 sigma Poisson error estimates are considered). The correlation function has been also measured separately for sources classified as AGN or galaxies. In both fields AGN have a median redshift of z~0.9 and a median 0.5-10 keV luminosity of L_x~10^43 erg s^-1, i.e. they are generally in the Seyfert luminosity regime. As in the case of the total samples, we found a significant difference in the AGN clustering amplitude between the two fields, the best fit correlation parameters being r0=10.3 +- 1.7 h^-1 Mpc, gamma=1.33 +- 0.14 in the CDFS, and r0=5.5 +- 0.6 h^-1 Mpc, gamma=1.50 +- 0.12 in the CDFN. Within each field no statistically significant difference is found between soft and hard X-ray selected sources or between type 1 and type 2 AGN. (abridged)
388 - E. J. Schreier 2001
We present preliminary results from imaging three HST/WFPC2 fields in V and I within the Chandra Deep Field South (CDFS). HSTs sensitivity and resolution are sufficient to reveal optical counterparts for 24 of the 26 CDFS X-ray sources detected in the 300 ksec X-ray catalog and to determine the morphologies of most of these. We find that the X-ray sources comprise two apparently distinct populations of optical candidates: one optically faint (I > 24) with V - I colors consistent with the I > 24 field population; the other significantly brighter (I < 22) with colors redder than the I < 22 field population. More than 2/3 of the X-ray source counterparts are resolved galaxies. The brighter sources are mostly AGN, based on their high X-ray luminosity. The optically resolved sources in the brighter population have a very narrow range of V - I color and appear to be a mix of both late and early type morphologies at low to moderate redshift. We show that the second population, with fainter optical counterparts, can be explained as higher redshift Type 2 AGN.
173 - R. Giacconi , A. Zirm , J. Wang 2001
In this Paper we present the source catalog obtained from a 942 ks exposure of the Chandra Deep Field South (CDFS), using ACIS-I on the Chandra X-ray Observatory. Catalog generation proceeded simultaneously using two different methods; a method of our own design using a modified version of the SExtractor algorithm, and a wavelet transform technique developed specifically for Chandra observations. The detection threshold has been set in order to have less than 10 spurious sources, as assessed by extensive simulations. We subdivided the catalog into four sections. The primary list consists of objects common to the two detection methods. Two secondary lists contain sources which were detected by: 1) the SExtractor algorithm alone and 2) the wavelet technique alone. The fourth list consists of possible diffuse or extended sources. The flux limits at the aimpoint for the soft (0.5--2 keV) and hard (2--10 keV) bands are 5.5E-17 erg/s/cm^2 and 4.5E-16 erg/s/cm^2 respectively. The total number of sources is 346; out of them, 307 were detected in the 0.5--2 keV band, and 251 in the 2--10 keV band. We also present optical identifications for the catalogued sources. Our primary optical data is R band imaging to a depth of R~26.5 (Vega). We found that the R-band/Chandra offsets are small, ~1 arcsec. Coordinate cross-correlation finds 85% of the Chandra sources covered in R to have counterparts within the 3-sigma error box (>~1.5 arcsec depending on off-axis angle and signal-to-noise). The unidentified fraction of sources, approximately ~10--15 %, is close to the limit expected from the observed X-ray flux to R-band ratio distribution for the identified sample.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا