No Arabic abstract
Following the tracks of Malbet, Yu, & Shao (1995} on dark hole algorithms, we present analytical methods to measure and correct the speckle noise behind an ideal coronagraph. We show that, in a low aberration regime, wavefront sensing can be accomplished with only three images, the next image being fully corrected (no iterative process needed). The only hardware required is the coronagraph deformable mirror and an imaging detector in the focal plane, thus there are no non-common path errors to correct. Our first method, speckle field nulling, is a fast FFT-based algorithm requiring the deformable mirror influence functions to have identical shapes. Our second method, speckle energy minimization is more general and based on matrix inversion. Numerical simulations show that these methods can improve the contrast by several orders of magnitude.
To detect Earth-like planets in the visible with a coronagraphic telescope, two major noise sources have to be overcome: the photon noise of the diffracted star light, and the speckle noise due to the star light scattered by instrumental defects. Coronagraphs tackle only the photon noise contribution. In order to decrease the speckle noise below the planet level, an active control of the wave front is required. We have developed analytical methods to measure and correct the speckle noise behind a coronagraph with a deformable mirror. In this paper, we summarize these methods, present numerical simulations, and discuss preliminary experimental results obtained with the High-Contrast Imaging Testbed at NASAs Jet Propulsion Laboratory.
In high-contrast space-based coronagraphs, one of the main limiting factors for imaging the dimmest exoplanets is the time varying nature of the residual starlight (speckles). Modern methods try to differentiate between the intensities of starlight and other sources, but none incorporate models of space-based systems which can take into account actuations of the deformable mirrors. Instead, we propose formulating the estimation problem in terms of the electric field while allowing for dithering of the deformable mirrors. Our reduced-order approach is similar to intensity-based PCA (e.g. KLIP) although, under certain assumptions, it requires a considerably lower number of modes of the electric field. We illustrate this by a FALCO simulation of the WFIRST hybrid Lyot coronagraph.
High-contrast imaging from space must overcome two major noise sources to successfully detect a terrestrial planet angularly close to its parent star: photon noise from diffracted star light, and speckle noise from star light scattered by instrumentally-generated wavefront perturbation. Coronagraphs tackle only the photon noise contribution by reducing diffracted star light at the location of a planet. Speckle noise should be addressed with adaptative-optics systems. Following the tracks of Malbet, Yu and Shao (1995), we develop in this paper two analytical methods for wavefront sensing and control that aims at creating dark holes, i.e. areas of the image plane cleared out of speckles, assuming an ideal coronagraph and small aberrations. The first method, speckle field nulling, is a fast FFT-based algorithm that requires the deformable-mirror influence functions to have identical shapes. The second method, speckle energy minimization, is more general and provides the optimal deformable mirror shape via matrix inversion. With a NxN deformable mirror, the size of matrix to be inverted is either N^2xN^2 in the general case, or only NxN if influence functions can be written as the tensor product of two one-dimensional functions. Moreover, speckle energy minimization makes it possible to trade off some of the dark hole area against an improved contrast. For both methods, complex wavefront aberrations (amplitude and phase) are measured using just three images taken with the science camera (no dedicated wavefront sensing channel is used), therefore there are no non-common path errors. We assess the theoretical performance of both methods with numerical simulations, and find that these speckle nulling techniques should be able to improve the contrast by several orders of magnitude.
One of the long-term goals of exoplanet science is the (atmospheric) characterization of a large sample (>100) of terrestrial planets to assess their potential habitability and overall diversity. Hence, it is crucial to quantitatively evaluate and compare the scientific return of various mission concepts. Here we discuss the exoplanet yield of a space-based mid-infrared (MIR) nulling interferometer. We use Monte-Carlo simulations, based on the observed planet population statistics from the Kepler mission, to quantify the number and properties of detectable exoplanets (incl. potentially habitable planets) and we compare the results to those for a large aperture optical/NIR space telescope. We investigate how changes in the underlying technical assumptions (sensitivity and spatial resolution) impact the results and discuss scientific aspects that influence the choice for the wavelength coverage and spectral resolution. Finally, we discuss the advantages of detecting exoplanets at MIR wavelengths, summarize the current status of some key technologies, and describe what is needed in terms of further technology development to pave the road for a space-based MIR nulling interferometer for exoplanet science.
Very high dynamical range coronagraphs targeting direct exo-planet detection (10^9 - 10^10 contrast) at small angular separation (few lambda/D units) usually require an input wavefront quality on the order of ten thousandths of wavelength RMS. We propose a novel method based on a pre-optics setup that behaves partly as a low-efficiency coronagraph, and partly as a high-sensitivity wavefront aberration compensator (phase and amplitude). The combination of the two effects results in a highly accurate corrected wavefront. First, an (intensity-) unbalanced nulling interferometer (UNI) performs a rejection of part of the wavefront electric field. Then the recombined output wavefront has its input aberrations magnified. Because of the unbalanced recombination scheme, aberrations can be free of phase singular points (zeros) and can therefore be compensated by a downstream phase and amplitude correction (PAC) adaptive optics system, using two deformable mirrors. In the image plane, the central stars peak intensity and the noise level of its speckled halo are reduced by the UNI-PAC combination: the output-corrected wavefront aberrations can be interpreted as an improved compensation of the initial (eventually already corrected) incident wavefront aberrations. The important conclusion is that not all the elements in the optical setup using UNI-PAC need to reach the lambda/10000 rms surface error quality.