We have constructed a 3D photoionisation model of a planetary nebula (PN) similar in structure to NGC 7009 with its outer pair of knots (also known as FLIERs --fast, low-ionization emission regions). The work is motivated by the fact that the strong [N II]6583A line emission from FLIERs in many planetary nebulae has been attributed to a significant local overabundance of nitrogen. We explore the possibility that the apparent enhanced nitrogen abundance previously reported in the FLIERs may be due to ionization effects. Our model is indeed able to reproduce the main spectroscopic and imaging characteristics of NGC 7009s bright inner rim and its outer pairs of knots, assuming homogeneous elemental abundances throughout the nebula, for nitrogen as well as all the other elements included in the model. Because of the fact that the (N+/N)/(O+/O) ratio predicted by our models are 0.60 for the rim and 0.72 for the knots, so clearly in disagreement with the N+/N=O+/O assumption of the ionization correction factors method (icf), the icfs will be underestimated by the empirical scheme, in both components, rim and knots, but more so in the knots. This effect is partly responsible for the apparent inhomogeneous N abundance empirically derived. The differences in the above ratio in these two components of the nebula may be due to a number of effects including charge exchange --as pointed out previously by other authors-- and the difference in the ionization potentials of the relevant species --which makes this ratio extremely sensitive to the shape of the local radiation field. Because of the latter, a realistic density distribution is essential to the modelling of a non-spherical object, if useful information is to be extracted from spatially resolved observations, as in the case of NGC 7009.