Do you want to publish a course? Click here

X-ray binaries in Sculptor

134   0   0.0 ( 0 )
 Added by Thomas J. Maccarone
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of a deep Chandra survey of the Sculptor dwarf spheroidal galaxy. We find five X-ray sources with L_X of at least 6*10^33 ergs/sec with optical counterparts establishing them as members of Sculptor. These X-ray luminosities indicate that these sources are X-ray binaries, as no other known class of Galactic point sources can reach 0.5-8 keV luminosities this high. Finding these systems proves definitively that such objects can exist in an old stellar population without stellar collisions. Three of these objects have highly evolved optical counterparts (giants or horizontal branch stars), as do three other sources whose X-ray luminosities are in the range which includes both quiescent low mass X-ray binaries and the brightest magnetic cataclysmic variables. Large area surveys should also turn up large numbers of quiescent X-ray binaries. (Modified)



rate research

Read More

117 - David A. Buote 2009
We present XMM RGS and Chandra LETG observations of the blazar, H 2356-309, located behind the Sculptor Wall, a large-scale galaxy structure expected to harbor high-density Warm-Hot Intergalactic Medium (WHIM). Our simultaneous analysis of the RGS and LETG spectra yields a 3-sigma detection of the crucial redshifted O vii K-alpha line with a column density (>~ 10^{16} cm^{-2}) consistent with similar large-scale structures produced in cosmological simulations. This represents the first detection of non-local WHIM from X-ray absorption studies where XMM and Chandra data are analyzed simultaneously and the absorber redshift is already known, thus providing robust evidence for the expected repository of the missing baryons.
This chapter discusses the implications of X-ray binaries on our knowledge of Type Ibc and Type II supernovae. X-ray binaries contain accreting neutron stars and stellar--mass black holes which are the end points of massive star evolution. Studying these remnants thus provides clues to understanding the evolutionary processes that lead to their formation. We focus here on the distributions of dynamical masses, space velocities and chemical anomalies of their companion stars. These three observational features provide unique information on the physics of core collapse and supernovae explosions within interacting binary systems. There is suggestive evidence for a gap between ~2-5 Msun in the observed mass distribution. This might be related to the physics of the supernova explosions although selections effects and possible systematics may be important. The difference between neutron star mass measurements in low-mass X-ray binaries (LMXBs) and pulsar masses in high-mass X-ray binaries (HMXBs) reflect their different accretion histories, with the latter presenting values close to birth masses. On the other hand, black holes in LMXBs appear to be limited to <~12 Msun because of strong mass-loss during the wind Wolf-Rayet phase. Detailed studies of a limited sample of black-hole X-ray binaries suggest that the more massive black holes have a lower space velocity, which could be explained if they formed through direct collapse. Conversely, the formation of low-mass black holes through a supernova explosion implies that large escape velocities are possible through ensuing natal and/or Blaauw kicks. Finally, chemical abundance studies of the companion stars in seven X-ray binaries indicate they are metal-rich (all except GRO J1655-40) and possess large peculiar abundances of alpha-elements (Abridged)
359 - Taotao Fang 2010
In a previous paper we reported a 3-sigma detection of an absorption line from the Warm-Hot Intergalactic Medium (WHIM) using the Chandra and XMM X-ray grating spectra of the blazar H2356-309, the sight-line of which intercepts the Sculptor Wall, a large-scale superstructure of galaxies at z ~ 0.03. To verify our initial detection, we obtained a deep (500 ks), follow-up exposure of H2356-309 as part of the Cycle-10 Chandra Large Project Program. From a joint analysis of the Cycle-10 and previous (Cycle-8) Chandra grating data we detect the redshifted OVII WHIM line at a significance level of 3.4-sigma, a substantial improvement over the 1.7-sigma level reported previously when using only the Cycle-8 data. The significance increases to 4.0-sigma when the existing XMM grating data are included in the analysis, thus confirming at higher significance the existence of the line at the redshift of the Sculptor Wall with an equivalent width of 28.5+/-10.5 mA (90% confidence). We obtain a 90% lower limit on the OVII column density of 0.8 10^16 cm^-2 and a 90% upper limit on the Doppler-b parameter of 460 km/s. Assuming the absorber is uniformly distributed throughout the ~ 15 Mpc portion of the blazars sight-line that intercepts the Sculptor Wall, that the OVII column density is ~ 2 10^16 cm^-2 (corresponding to b > 150 km/s where the inferred column density is only weakly dependent on b), and that the oxygen abundance is 0.1 solar, we estimate a baryon over-density of ~ 30 for the WHIM, which is consistent with the peak of the WHIM mass fraction predicted by cosmological simulations. The clear detection of OVII absorption in the Sculptor Wall demonstrates the viability of using current observatories to study WHIM in the X-ray absorption spectra of blazars behind known large-scale structures.
Despite considerable evidence verifying that millisecond pulsars are spun up through sustained accretion in low-mass X-ray binaries (LMXBs), it has proven surprisingly difficult to actually detect millisecond X-ray pulsars in LMXBs. There are only 5 accretion-powered millisecond X-ray pulsars known among more than 80 LMXBs containing neutron stars, but there are another 11 nuclear powered millisecond pulsars which reveal their spin only during brief, thermonuclear X-ray bursts. In addition, 2 of the accretion-powered pulsars also exhibit X-ray burst oscillations, and their unusual properties, along with the absence of persistent pulsations in most LMXBs, suggest that the magnetic fields in many LMXBs may be hidden by accreted material. Interestingly, the nuclear-powered pulsars offer a statistically unbiased probe of the spin distribution of recycled pulsars and show that this distribution cuts off sharply above 730 Hz, well below the breakup spin rate for most neutron star equations of state. This indicates that some mechanism acts to halt or balance spin-up due to accretion and that submillisecond pulsars must be very rare (and are possibly nonexistent). It is unclear what provides the necessary angular momentum sink, although gravitational radiation is an attractive possibility.
A homogeneous set of UBV photometry (354 data points obtained between 1983 and 1998) for the Be/X-ray binary A0535+26 = V725Tau is analysed, aiming to look for possible periodic component(s). After subtraction of the long-term variation it was found that only a 103-day periodic component remains in the power spectra in both the V and B colour bands. The probability of chance occurrence of such a peak is less than 0.1%. There are no signs of optical variability at the X-ray period (111 d). We discuss possible reasons for a 103-day modulation and suggest that it corresponds to a beat frequency of the orbital period of the neutron star and the precession period (~1400 d) either of an accretion disc around the neutron star or a warped decretion disc around the Be star.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا