Do you want to publish a course? Click here

Helium diffusion during the evolution of solar-type stars : asteroseismic tests

101   0   0.0 ( 0 )
 Added by Matthieu Castro Mr
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

The element diffusion, described by Michaud (1970), is now recognized to occur in all kinds of stars. We attempt to give evidence of signatures of helium diffusion below the convective zone by the way of asteroseismology.



rate research

Read More

Detailed understanding of stellar physics is essential towards a robust determination of stellar properties (e.g. radius, mass, and age). Among the vital input physics used in the modelling of solar-type stars which remain poorly constrained, is the initial helium abundance. To this end, when constructing stellar model grids, the initial helium abundance is estimated either (i) by using the semi-empirical helium-to-heavy element enrichment ratio, (${Delta Y}/{Delta Z}$), anchored to the standard Big Bang Nucleosynthesis value or (ii) by setting the initial helium abundance as a free variable. Adopting 35 low-mass, solar-type stars with multi-year Kepler photometry from the asteroseismic LEGACY sample, we explore the systematic uncertainties on the inferred stellar parameters (i.e., radius, mass, and age) arising from the treatment of the initial helium abundance in stellar model grids . The stellar masses and radii derived from grids with free initial helium abundance are lower compared to those from grids based on a fixed ${Delta Y}/{Delta Z}$ ratio. We find the systematic uncertainties on mean density, radius, mass, and age arising from grids which employ a fixed value of ${Delta Y}/{Delta Z}$ and those with free initial helium abundance to be $sim$ 0.9%, $sim$ 2%, $sim$ 5% and $sim$ 29%, respectively. We report that the systematic uncertainties on the inferred masses and radii arising from the treatment of initial helium abundance in stellar grids lie within the expected accuracy limits of ESAs PLATO, although this is not the case for the age.
137 - M. Castro , S. Vauclair 2006
Element diffusion is expected to occur in all kinds of stars : according to the relative effect of gravitation and radiative acceleration, they can fall or be pushed up in the atmospheres. Helium sinks in all cases, thereby creating a gradient at the bottom of the convective zones. This can have important consequences for the sound velocity, as has been proved in the sun with helioseismology. We investigate signatures of helium diffusion in late F-type stars by asteroseismology. Stellar models were computed with different physical inputs (with or without element diffusion) and iterated in order to fit close-by evolutionary tracks for each mass. The theoretical oscillation frequencies were computed and compared for pairs of models along the tracks. Various asteroseismic tests (large separations, small separations, second differences) were used and studied for the comparisons. The results show that element diffusion leads to changes in the frequencies for masses larger than 1.2 Msun. In particular the helium gradient below the convective zone should be detectable through the second differences.
Stellar magnetic activity decays over the main-sequence life of cool stars due to the stellar spin-down driven by magnetic braking. The evolution of chromospheric emission is well-studied for younger stars, but difficulties in determining the ages of older cool stars on the main sequence have complicated such studies for older stars in the past. Here we report on chromospheric Ca II H and K line measurements for 26 main-sequence cool stars with asteroseismic ages older than a gigayear and spectral types F and G. We find that for the G stars and the cooler F-type stars which still have convective envelopes the magnetic activity continues to decrease at stellar ages above one gigayear. Our magnetic activity measurements do not show evidence for a stalling of the magnetic braking mechanism, which has been reported for stellar rotation versus age for G and F type stars. We also find that the measured RHK indicator value for the cool F stars in our sample is lower than predicted by common age-activity relations that are mainly calibrated on data from young stellar clusters. We conclude that, within individual spectral type bins, chromospheric magnetic activity correlates well with stellar age even for old stars.
We present preliminary asteroseismic results from Kepler on three G-type stars. The observations, made at one-minute cadence during the first 33.5d of science operations, reveal high signal-to-noise solar-like oscillation spectra in all three stars: About 20 modes of oscillation may be clearly distinguished in each star. We discuss the appearance of the oscillation spectra, use the frequencies and frequency separations to provide first results on the radii, masses and ages of the stars, and comment in the light of these results on prospects for inference on other solar-type stars that Kepler will observe.
The influence of rotational mixing on the evolution and asteroseismic properties of solar-type stars is studied. Rotational mixing changes the global properties of a solar-type star with a significant increase of the effective temperature resulting in a shift of the evolutionary track to the blue part of the HR diagram. These differences are related to changes of the chemical composition, because rotational mixing counteracts the effects of atomic diffusion leading to larger helium surface abundances for rotating models than for non-rotating ones. Higher values of the large frequency separation are then found for rotating models than for non-rotating ones at the same evolutionary stage, because the increase of the effective temperature leads to a smaller radius and hence to an increase of the stellar mean density. Rotational mixing also has a considerable impact on the structure and chemical composition of the central stellar layers by bringing fresh hydrogen fuel to the core, thereby enhancing the main-sequence lifetime. The increase of the central hydrogen abundance together with the change of the chemical profiles in the central layers result in a significant increase of the values of the small frequency separations and of the ratio of the small to large separations for models including shellular rotation. This increase is clearly seen for models with the same age sharing the same initial parameters except for the inclusion of rotation as well as for models with the same global stellar parameters and in particular the same location in the HR diagram. By computing rotating models of solar-type stars including the effects of a dynamo that possibly occurs in the radiative zone, we find that the efficiency of rotational mixing is strongly reduced when the effects of magnetic fields are taken into account, in contrast to what happens in massive stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا