Do you want to publish a course? Click here

Acceleration Mechanics in Relativistic Shocks by the Weibel Instability

83   0   0.0 ( 0 )
 Added by Ken-Ichi Nishikawa
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Plasma instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks may be responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated long-term particle acceleration associated with relativistic electron-ion or electron-positron jet fronts propagating into an unmagnetized ambient electron-ion or electron-positron plasma. These simulations have been performed with a longer simulation system than our previous simulations in order to investigate the nonlinear stage of the Weibel instability and its particle acceleration mechanism. The current channels generated by the Weibel instability are surrounded by toroidal magnetic fields and radial electric fields. This radial electric field is quasi stationary and accelerates particles which are then deflected by the magnetic field.



rate research

Read More

301 - M. Lemoine 2019
We develop a comprehensive theoretical model of relativistic collisionless pair shocks mediated by the current filamentation instability. We notably characterize the noninertial frame in which this instability is of a mostly magnetic nature, and describe at a microscopic level the deceleration and heating of the incoming background plasma through its collisionless interaction with the electromagnetic turbulence. Our model compares well to large-scale 2D3V PIC simulations, and provides an important touchstone for the phenomenology of such plasma systems.
Collisionless shocks are ubiquitous in the Universe and often associated with strong magnetic field. Here we use large-scale particle-in-cell simulations of non-relativistic perpendicular shocks in the high-Mach-number regime to study the amplification of magnetic field within shocks. The magnetic field is amplified at the shock transition due to the ion-ion two-stream Weibel instability. The normalized magnetic-field strength strongly correlates with the Alfvenic Mach number. Mock spacecraft measurements derived from PIC simulations are fully consistent with those taken in-situ at Saturns bow shock by the Cassini spacecraft.
The production of weakly relativistic plasma by microwave electric field with circular polarization has been studied. Electron distribution function obtained for this produced plasma and shown that it is non-equilibrium and anisotropic. It is shown that produced plasma accelerated on direction of propagation microwave electric field. The electron velocity on this direction strongly depends on electron origination phase during ionization and microwave electric field phase and it s amplitude. The dielectric tensor obtained for this plasma and the weibel instability studied for it.
We study diffusive shock acceleration (DSA) of electrons in non-relativistic quasi-perpendicular shocks using self-consistent one-dimensional particle-in-cell (PIC) simulations. By exploring the parameter space of sonic and Alfv{e}nic Mach numbers we find that high Mach number quasi-perpendicular shocks can efficiently accelerate electrons to power-law downstream spectra with slopes consistent with DSA prediction. Electrons are reflected by magnetic mirroring at the shock and drive non-resonant waves in the upstream. Reflected electrons are trapped between the shock front and upstream waves and undergo multiple cycles of shock drift acceleration before the injection into DSA. Strong current-driven waves also temporarily change the shock obliquity and cause mild proton pre-acceleration even in quasi-perpendicular shocks, which otherwise do not accelerate protons. These results can be used to understand nonthermal emission in supernova remnants and intracluster medium in galaxy clusters.
The growth and saturation of magnetic fields due to the Weibel instability (WI) have important implications for laboratory and astrophysical plasmas, and this has drawn significant interest recently. Since the WI can generate a large magnetic field from no initial field, the maximum magnitudes achieved can have significant consequences for a number of applications. Hence, an understanding of the detailed dynamics driving the nonlinear saturation of the WI is important. This work considers the nonlinear saturation of the WI when counter-streaming populations of initially unmagnetized electrons are perturbed by a magnetic field oriented perpendicular to the direction of streaming. Previous works have found magnetic trapping to be important and connected electron skin depth spatial scales to the nonlinear saturation of the WI. 2 Results presented in this work are consistent with these findings for a high-temperature case. However, using a high-order continuum kinetic simulation tool, this work demonstrates that, when the electron populations are colder, a significant electrostatic potential develops that works with the magnetic field to create potential wells. The electrostatic field develops due to transverse flows induced by the WI, and in some cases is strengthened by a secondary instability. This field plays a key role in saturation of the WI for colder populations. The role of the electrostatic potential in Weibel instability saturation has not been studied in detail previously.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا