No Arabic abstract
We present millimeter CO line emission observations of 12 galaxies within the Abell 262 cluster, together with L_FIR data, in the context of a possible molecular gas deficiency within the region of the cluster center. Several indications of the presence of such a deficiency are highlighted and connected to a model of cirrus-like cloud stripping. The model predicts a drop in the average 100 micron flux density of galaxies in the core of the cluster compared to the average 100 micron flux density in the outer regions, which is actually indicated in the IRAS data of the cluster members. This drop is explained by the decrease in the total hydrogen column density N(H) and, therefore, also includes a decrease in the molecular gas content. In addition to results for the global CO content of the galaxy sample, high-resolution interferometric CO(1-0) observations of one of the cluster members, UGC 1347, exemplify the spatial distribution of the molecular gas in a galaxy of the cluster. With these observations, it was possible to confirm the existence of a bright off-nuclear CO-emission source and to derive molecular masses and line ratios for this source and the nucleus.
We report ALMA Early Science CO(1-0) and CO(3-2) observations of the brightest cluster galaxy (BCG) in Abell 1664. The BCG contains 1.1x10^{10} solar masses of molecular gas divided roughly equally between two distinct velocity systems: one from -250 to +250 km/s centred on the BCGs systemic velocity and a high velocity system blueshifted by 570 km/s with respect to the systemic velocity. The BCGs systemic component shows a smooth velocity gradient across the BCG center with velocity proportional to radius suggestive of solid body rotation about the nucleus. However, the mass and velocity structure are highly asymmetric and there is little star formation coincident with a putative disk. It may be an inflow of gas that will settle into a disk over several 10^8 yr. The high velocity system consists of two gas clumps, each ~2 kpc across, located to the north and southeast of the nucleus. Each has a line of sight velocity spread of 250-300 km/s. The velocity of the gas in the high velocity system tends to increase towards the BCG center and could signify a massive high velocity flow onto the nucleus. However, the velocity gradient is not smooth and these structures are also coincident with low optical-UV surface brightness regions, which could indicate dust extinction associated with each clump. If so, the high velocity gas would be projected in front of the BCG and moving toward us along the line of sight in a massive outflow most likely driven by the AGN. A merger origin is unlikely but cannot be ruled out.
The results from Suzaku XIS observations of the relaxed cluster of galaxies Abell2052 are presented. Offset pointing data are used to estimate the Galactic foreground emission in the direction to the cluster. Significant soft X-ray excess emission above this foreground, the intra-cluster medium emission, and other background components is confirmed and resolved spectroscopically and radially. This excess can be described either by (a) local variations of known Galactic emission components or (b) an additional thermal component with temperature of about 0.2 keV, possibly associated with the cluster. The radial temperature and metal abundance profiles of the intra-cluster medium are measured within sim 20 in radius (about 60% of the virial radius) from the cluster center . The temperature drops radially to 0.5-0.6 of the peak value at a radius of sim 15. The gas-mass-weighted metal abundance averaged over the observed region is found to be 0.21 +- 0.05 times solar.
We present results from two observations (combined exposure of ~17 ks) of galaxy cluster A2218 using the Advanced CCD Imaging Spectrometer on board the Chandra X-ray Observatory that were taken on October 19, 1999. Using a Raymond-Smith single temperature plasma model corrected for galactic absorption we find a mean cluster temperature of kT = 6.9+/-0.5 keV, metallicity of 0.20+/-0.13 (errors are 90 % CL) and rest-frame luminosity in the 2-10 keV energy band of 6.2x10^{44} erg/s in a LambdaCDM cosmology with H_0=65 km/s/Mpc. The brightness distribution within 4.2 of the cluster center is well fit by a simple spherical beta model with core radius 66.4 and beta = 0.705 . High resolution Chandra data of the inner 2 of the cluster show the x-ray brightness centroid displaced ~22 from the dominant cD galaxy and the presence of azimuthally asymmetric temperature variations along the direction of the cluster mass elongation. X-ray and weak lensing mass estimates are in good agreement for the outer parts (r > 200h^{-1}) of the cluster; however, in the core the observed temperature distribution cannot reconcile the x-ray and strong lensing mass estimates in any model in which the intracluster gas is in thermal hydrostatic equilibrium. Our x-ray data are consistent with a scenario in which recent merger activity in A2218 has produced both significant non-thermal pressure in the core and substructure along the line of sight; each of these phenomena probably contributes to the difference between lensing and x-ray core mass estimates.
We examine the possible acceleration mechanisms of the relativistic particles responsible for the extended radio emission in Abell 520. We used new LOFAR 145 MHz, archival GMRT 323 MHz and VLA 1.5 GHz data to study the morphological and spectral properties of extended cluster emission. The observational properties are discussed in the framework of particle acceleration models associated with cluster merger turbulence and shocks. In Abell 520, we confirm the presence of extended synchrotron radio emission that has been classified as a radio halo. The comparison between the radio and X-ray brightness suggests that the halo might originate in a cocoon rather than from the central X-ray bright regions of the cluster. The halo spectrum is roughly uniform on the scale of 66 kpc. There is a hint of spectral steepening from the SW edge towards the cluster centre. Assuming DSA, the radio data are suggestive of a shock of $mathcal{M}_{SW}=2.6_{-0.2}^{+0.3}$ that is consistent with the X-ray derived estimates. This is in line with the scenario in which relativistic electrons in the SW radio edge gain their energies at the shock front via acceleration of either thermal or fossil electrons. We do not detect extended radio emission ahead of the SW shock that is predicted if the emission is the result of adiabatic compression. An X-ray surface brightness discontinuity is detected towards the NE region that may be a counter shock of $mathcal{M}_{NE}^{X}=1.52pm0.05$. This is lower than the value predicted from the radio emission ($mathcal{M}_{NE}=2.1pm0.2$). Our observations indicate that the SW radio emission in Abell 520 is likely effected by the prominent X-ray detected shock in which radio emitting particles are (re-)accelerated through the Fermi-I mechanism. The NE X-ray discontinuity that is approximately collocated with an edge in the radio emission hints at the presence of a counter shock.
The pre-merging system of galaxy clusters Abell 3391-Abell 3395 located at a mean redshift of 0.053 has been observed at 1 GHz in an ASKAP/EMU Early Science observation as well as in X-rays with eROSITA. The projected separation of the X-ray peaks of the two clusters is $sim$50$$ or $sim$ 3.1 Mpc. Here we present an inventory of interesting radio sources in this field around this cluster merger. While the eROSITA observations provide clear indications of a bridge of thermal gas between the clusters, neither ASKAP nor MWA observations show any diffuse radio emission coinciding with the X-ray bridge. We derive an upper limit on the radio emissivity in the bridge region of $langle J rangle_{1,{rm GHz}}< 1.2 times 10^{-44} {rm W}, {rm Hz}^{-1} {rm m}^{-3}$. A non-detection of diffuse radio emission in the X-ray bridge between these two clusters has implications for particle-acceleration mechanisms in cosmological large-scale structure. We also report extended or otherwise noteworthy radio sources in the 30 deg$^2$ field around Abell 3391-Abell 3395. We identified 20 Giant Radio Galaxies, plus 7 candidates, with linear projected sizes greater than 1 Mpc. The sky density of field radio galaxies with largest linear sizes of $>0.7$ Mpc is $approx 1.7$ deg$^{-2}$, three times higher than previously reported. We find no evidence for a cosmological evolution of the population of Giant Radio Galaxies. Moreover, we find seven candidates for cluster radio relics and radio halos.