Do you want to publish a course? Click here

Radiation Pressure in Massive Star Formation

68   0   0.0 ( 0 )
 Added by Mark R. Krumholz
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Stars with masses of >~ 20 solar masses have short Kelvin times that enable them to reach the main sequence while still accreting from their natal clouds. The resulting nuclear burning produces a huge luminosity and a correspondingly large radiation pressure force on dust grains in the accreting gas. This effect may limit the upper mass of stars that can form by accretion. Indeed, simulations and analytic calculations to date have been unable to resolve the mystery of how stars of 50 solar masses and up form. We present two new ideas to solve the radiation pressure problem. First, we use three-dimensional radiation hydrodynamic adaptive mesh refinement simulations to study the collapse of massive cores. We find that in three dimensions a configuration in which radiation holds up an infalling envelope is Rayleigh-Taylor unstable, leading radiation driven bubbles to collapse and accretion to continue. We also present Monte Carlo radiative transfer calculations showing that the cavities created by protostellar winds provides a valve that allow radiation to escape the accreting envelope, further reducing the ability of radiation pressure to inhibit accretion.



rate research

Read More

Stellar feedback in the form of radiation pressure and magnetically-driven collimated outflows may limit the maximum mass that a star can achieve and affect the star-formation efficiency of massive pre-stellar cores. Here we present a series of 3D adaptive mesh refinement radiation-magnetohydrodynamic simulations of the collapse of initially turbulent, massive pre-stellar cores. Our simulations include radiative feedback from both the direct stellar and dust-reprocessed radiation fields, and collimated outflow feedback from the accreting stars. We find that protostellar outflows punches holes in the dusty circumstellar gas along the stars polar directions, thereby increasing the size of optically thin regions through which radiation can escape. Precession of the outflows as the stars spin axis changes due to the turbulent accretion flow further broadens the outflow, and causes more material to be entrained. Additionally, the presence of magnetic fields in the entrained material leads to broader entrained outflows that escape the core. We compare the injected and entrained outflow properties and find that the entrained outflow mass is a factor of $sim$3 larger than the injected mass and the momentum and energy contained in the entrained material are $sim$25% and $sim$5% of the injected momentum and energy, respectively. As a result, we find that, when one includes both outflows and radiation pressure, the former are a much more effective and important feedback mechanism, even for massive stars with significant radiative outputs.
Cosmological simulations of galaxies have typically produced too many stars at early times. We study the global and morphological effects of radiation pressure (RP) in eight pairs of high-resolution cosmological galaxy formation simulations. We find that the additional feedback suppresses star formation globally by a factor of ~2. Despite this reduction, the simulations still overproduce stars by a factor of ~2 with respect to the predictions provided by abundance matching methods for halos more massive than 5E11 Msun/h (Behroozi, Wechsler & Conroy 2013). We also study the morphological impact of radiation pressure on our simulations. In simulations with RP the average number of low mass clumps falls dramatically. Only clumps with stellar masses Mclump/Mdisk <= 5% are impacted by the inclusion of RP, and RP and no-RP clump counts above this range are comparable. The inclusion of RP depresses the contrast ratios of clumps by factors of a few for clump masses less than 5% of the disk masses. For more massive clumps, the differences between and RP and no-RP simulations diminish. We note however, that the simulations analyzed have disk stellar masses below about 2E10 Msun/h. By creating mock Hubble Space Telescope observations we find that the number of clumps is slightly reduced in simulations with RP. However, since massive clumps survive the inclusion of RP and are found in our mock observations, we do not find a disagreement between simulations of our clumpy galaxies and observations of clumpy galaxies. We demonstrate that clumps found in any single gas, stellar, or mock observation image are not necessarily clumps found in another map, and that there are few clumps common to multiple maps.
The enormous radiative and mechanical luminosities of massive stars impact a vast range of scales and processes, from the reionization of the universe, to the evolution of galaxies, to the regulation of the interstellar medium, to the formation of star clusters, and even to the formation of planets around stars in such clusters. Two main classes of massive star formation theory are under active study, Core Accretion and Competitive Accretion. In Core Accretion, the initial conditions are self-gravitating, centrally concentrated cores that condense with a range of masses from the surrounding, fragmenting clump environment. They then undergo relatively ordered collapse via a central disk to form a single star or a small-N multiple. In this case, the pre-stellar core mass function has a similar form to the stellar initial mass function. In Competitive Accretion, the material that forms a massive star is drawn more chaotically from a wider region of the clump without passing through a phase of being in a massive, coherent core. In this case, massive star formation must proceed hand in hand with star cluster formation. If stellar densities become very high near the cluster center, then collisions between stars may also help to form the most massive stars. We review recent theoretical and observational progress towards understanding massive star formation, considering physical and chemical processes, comparisons with low and intermediate-mass stars, and connections to star cluster formation.
211 - Yichen Zhang 2013
We present radiation transfer (RT) simulations of evolutionary sequences of massive protostars forming from massive dense cores in environments of high surface densities. The protostellar evolution is calculated with a detailed multi-zone model, with the accretion rate regulated by feedback from an evolving disk-wind outflow cavity. Disk and envelope evolutions are calculated self-consistently. In this framework, an evolutionary track is determined by three environmental initial conditions: the initial core mass M_c, the mean surface density of the ambient star-forming clump Sigma_cl, and the rotational-to-gravitational energy ratio of the initial core, beta_c. Evolutionary sequences with various M_c, Sigma_cl, beta_c are constructed. We find that in a fiducial model with M_c=60Msun, Sigma_cl=1 g/cm^2 and beta_c=0.02, the final star formation efficiency >~0.43. For each evolutionary track, RT simulations are performed at selected stages, with temperature profiles, SEDs, and images produced. At a given stage the envelope temperature is highly dependent on Sigma_cl, but only weakly dependent on M_c. The SED and MIR images depend sensitively on the evolving outflow cavity, which gradually wides as the protostar grows. The fluxes at <~100 microns increase dramatically, and the far-IR peaks move to shorter wavelengths. We find that, despite scatter caused by different M_c, Sigma_cl, beta, and inclinations, sources at a given evolutionary stage appear in similar regions on color-color diagrams, especially when using colors at >~ 70 microns, where the scatter due to the inclination is minimized, implying that such diagrams can be useful diagnostic tools of evolutionary stages of massive protostars. We discuss how intensity profiles along or perpendicular to the outflow axis are affected by environmental conditions and source evolution.
169 - K. ONeil 2008
Massive low surface brightness galaxies have disk central surface brightnesses at least one magnitude fainter than the night sky, but total magnitudes and masses that show they are among the largest galaxies known. Like all low surface brightness (LSB) galaxies, massive LSB galaxies are often in the midst of star formation yet their stellar light has remained diffuse, raising the question of how star formation is proceeding within these systems. HI observations have played a crucial role in studying LSB galaxies as they are typically extremely gas rich. In the past few years we have more than quadrupled the total number of massive LSB galaxies,primarily through HI surveys. To clarify their structural parameters and stellar and gas content, we have undertaken a multi-wavelength study of these enigmatic systems. The results of this study, which includes HI, CO, optical, near UV, and far UV images of the galaxies, will provide the most in depth study done to date of how, when, and where star formation proceeds within this unique subset of the galaxy population.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا