Do you want to publish a course? Click here

3D-radiation hydro simulations of disk-planet interactions: I. Numerical algorithm and test cases

45   0   0.0 ( 0 )
 Added by Hubert Klahr
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the evolution of an embedded protoplanet in a circumstellar disk using the 3D-Radiation Hydro code TRAMP, and treat the thermodynamics of the gas properly in three dimensions. The primary interest of this work lies in the demonstration and testing of the numerical method. We show how far numerical parameters can influence the simulations of gap opening. We study a standard reference model under various numerical approximations. Then we compare the commonly used locally isothermal approximation to the radiation hydro simulation using an equation for the internal energy. Models with different treatments of the mass accretion process are compared. Often mass accumulates in the Roche lobe of the planet creating a hydrostatic atmosphere around the planet. The gravitational torques induced by the spiral pattern of the disk onto the planet are not strongly affected in the average magnitude, but the short time scale fluctuations are stronger in the radiation hydro models. An interesting result of this work lies in the analysis of the temperature structure around the planet. The most striking effect of treating the thermodynamics properly is the formation of a hot pressure--supported bubble around the planet with a pressure scale height of H/R ~ 0.5 rather than a thin Keplerian circumplanetary accretion disk. We also observe an outflow of gas above and below the planet during the gap opening phase.



rate research

Read More

The gravitational interaction between a protoplanetary disc and planetary sized bodies that form within it leads to the exchange of angular momentum, resulting in migration of the planets and possible gap formation in the disc for more massive planets. In this article, we review the basic theory of disc-planet interactions, and discuss the results of recent numerical simulations of planets embedded in protoplanetary discs. We consider the migration of low mass planets and recent developments in our understanding of so-called type I migration when a fuller treatment of the disc thermodynamics is included. We discuss the runaway migration of intermediate mass planets (so-called type III migration), and the migration of giant planets (type II migration) and the associated gap formation in the disc. The availability of high performance computing facilities has enabled global simulations of magnetised, turbulent discs to be computed, and we discuss recent results for both low and high mass planets embedded in such discs.
The discovery of close orbiting extrasolar giant planets led to extensive studies of disk planet interactions and the forms of migration that can result as a means of accounting for their location. Early work established the type I and type II migration regimes for low mass embedded planets and high mass gap forming planets respectively. While providing an attractive means of accounting for close orbiting planets intially formed at several AU, inward migration times for objects in the earth mass range were found to be disturbingly short, making the survival of giant planet cores an issue. Recent progress in this area has come from the application of modern numerical techniques which make use of up to date supercomputer resources. These have enabled higher resolution studies of the regions close to the planet and the initiation of studies of planets interacting with disks undergoing MHD turbulence. This work has led to indications of how the inward migration of low to intermediate mass planets could be slowed down or reversed. In addition, the possibility of a new very fast type III migration regime, that can be directed inwards or outwards, that is relevant to partial gap forming planets in massive disks has been investigated.
The functional renormalization group (FRG) approach is a powerful tool for studies of a large variety of systems, ranging from statistical physics over the theory of the strong interaction to gravity. The practical application of this approach relies on the derivation of so-called flow equations, which describe the change of the quantum effective action under the variation of a coarse-graining parameter. In the present work, we discuss in detail a novel approach to solve such flow equations. This approach relies on the fact that RG equations can be rewritten such that they exhibit similarities with the conservation laws of fluid dynamics. This observation can be exploited in different ways. First of all, we show that this allows to employ powerful numerical techniques developed in the context of fluid dynamics to solve RG equations. In particular, it allows to reliably treat the emergence of non-analytic behavior in the RG flow of the effective action as it is expected to occur in studies of, e.g., spontaneous symmetry breaking. Second, the analogy between RG equations and fluid dynamics offers the opportunity to gain novel insights into RG flows and their interpretation in general, including the irreversibility of RG flows. We work out this connection in practice by applying it to zero-dimensional quantum-field theoretical models. The generalization to higher-dimensional models is also discussed. Our findings are expected to help improving future FRG studies of quantum field theories in higher dimensions both on a qualitative and quantitative level.
Neutron stars harbour extremely strong magnetic fields within their solid outer crust. The topology of this field strongly influences the surface temperature distribution, and hence the stars observational properties. In this work, we present the first realistic simulations of the coupled crustal magneto-thermal evolution of isolated neutron stars in three dimensions with account for neutrino emission, obtained with the pseudo-spectral code Parody. We investigate both the secular evolution, especially in connection with the onset of instabilities during the Hall phase, and the short-term evolution following episodes of localised energy injection. Simulations show that a resistive tearing instability develops in about a Hall time if the initial toroidal field exceeds ~$10^{15}$ G. This leads to crustal failures because of the huge magnetic stresses coupled with the local temperature enhancement produced by dissipation. Localised heat deposition in the crust results in the appearance of hot spots on the star surface which can exhibit a variety of patterns. Since the transport properties are strongly influenced by the magnetic field, the hot regions tend to drift away and get deformed following the magnetic field lines while cooling. The shapes obtained with our simulations are reminiscent of those recently derived from NICER X-ray observations of the millisecond pulsar PSR J0030+0451.
Growth of software size, lack of resources to perform regression testing, and failure to detect bugs faster have seen increased reliance on continuous integration and test automation. Even with greater hardware and software resources dedicated to test automation, software testing is faced with enormous challenges, resulting in increased dependence on complex mechanisms for automated test case selection and prioritization as part of a continuous integration framework. These mechanisms are currently using simple entities called test cases that are concretely realized as executable scripts. Our key idea is to provide test cases with more reasoning, adaptive behavior and learning capabilities by using the concepts of intelligent software agents. We refer to such test cases as test agents. The model that underlie a test agent is capable of flexible and autonomous actions in order to meet overall testing objectives. Our goal is to increase the decentralization of regression testing by letting test agents to know for themselves when they should be executing, how they should update their purpose, and when they should interact with each other. In this paper, we envision software test agents that display such adaptive autonomous behavior. Emerging developments and challenges regarding the use of test agents are explored-in particular, new research that seeks to use adaptive autonomous agents in software testing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا