Do you want to publish a course? Click here

The Formation and Evolution of Planetary Systems (FEPS): Discovery of an Unusual Debris System Associated with HD 12039

45   0   0.0 ( 0 )
 Added by Dean Hines Ph.D.
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of a debris system associated with the $sim 30$ Myr old G3/5V star HD 12039 using {it Spitzer Space Telescope} observations from 3.6 -- 160$mu$m. An observed infrared excess (L$_{rm IR}$/L$_{ast} = 1times10^{-4}$) above the expected photosphere for $lambda gtrsim 14mu$m is fit by thermally emitting material with a color temperature of T$sim 110$ K, warmer than the majority of debris disks identified to date around Sun-like stars. The object is not detected at 70$mu$m with a 3$sigma$ upper limit 6 times the expected photospheric flux. The spectrum of the infrared excess can be explained by warm, optically thin material comprised of blackbody-like grains of size $gtrsim 7 mu$m that reside in a belt orbiting the star at 4--6 AU. An alternate model dominated by smaller grains, near the blow-out size $asim 0.5mu$m, located at 30-40AU is also possible, but requires the dust to have been produced recently since such small grains will be expelled from the system by radiation pressure in $sim$ few $times 10^{2}$yrs.



rate research

Read More

We present Spitzer photometric (IRAC and MIPS) and spectroscopic (IRS low resolution) observations for 314 stars in the Formation and Evolution of Planetary Systems (FEPS) Legacy program. These data are used to investigate the properties and evolution of circumstellar dust around solar-type stars spanning ages from approximately 3 Myr to 3 Gyr. We identify 46 sources that exhibit excess infrared emission above the stellar photosphere at 24um, and 21 sources with excesses at 70um. Five sources with an infrared excess have characteristics of optically thick primordial disks, while the remaining sources have properties akin to debris systems. The fraction of systems exhibiting a 24um excess greater than 10.2% above the photosphere is 15% for ages < 300 Myr and declines to 2.7% for older ages. The upper envelope to the 70um fractional luminosity appears to decline over a similar age range. The characteristic temperature of the debris inferred from the IRS spectra range between 60 and 180 K, with evidence for the presence of cooler dust to account for the strength of the 70um excess emission. No strong correlation is found between dust temperature and stellar age. Comparison of the observational data with disk models containing a power-law distribution of silicate grains suggest that the typical inner disk radius is > 10 AU. Although the interpretation is not unique, the lack of excess emission shortwards of 16um and the relatively flat distribution of the 24um excess for ages <300~Myr is consistent with steady-state collisional models.
(abbreviated) We report detection with the Spitzer Space Telescope of cool dust surrounding solar type stars. The observations were performed as part of the Legacy Science Program, ``Formation and Evolution of Planetary Systems (FEPS). From the overall FEPS sample (Meyer et al. 2006) of 328 stars having ages ~0.003-3 Gyr we have selected sources with 70 um flux densities indicating excess in their spectral energy distributions above expected photospheric emission........ .....The rising spectral energy distributions towards - and perhaps beyond - 70 um imply dust temperatures T_dust <45-85 K for debris in equilibrium with the stellar radiation field. We infer bulk properties such as characteristic temperature, location, fractional luminosity, and mass of the dust from fitted single temperature blackbody models. For >1/3 of the debris sources we find that multiple temperature components are suggested, implying a spatial distribution of dust extending over many tens of AU. Because the disks are dominated by collisional processes, the parent body (planetesimal) belts may be extended as well. Preliminary assessment of the statistics of cold debris around sun-like stars shows that ~10% of FEPS targets with masses between 0.6 and 1.8 Msun and ages between 30 Myr and 3 Gyr exhibit 70 um emission in excess of the expected photospheric flux density. We find that fractional excess amplitudes appear higher for younger stars and that there may be a trend in 70 um excess frequency with stellar mass.
We present the first scattered light detections of the HD 106906 debris disk using Gemini/GPI in the infrared and HST/ACS in the optical. HD 106906 is a 13 Myr old F5V star in the Sco-Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius $sim$50 AU, and an outer extent $>$500 AU. The HST data show the outer regions are highly asymmetric, resembling the needle morphology seen for the HD 15115 debris disk. The planet candidate is oriented $sim$21$deg$ away from the position angle of the primarys debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primarys disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. We show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.
We present data obtained with the Infrared Array Camera (IRAC) aboard the Spitzer Space Telescope (Spitzer) for a sample of 74 young (t < 30 Myr old) Sun-like (0.7 < M(star)/M(Sun) < 1.5) stars. These are a sub-set of the observations that comprise the Spitzer Legacy science program entitled the Formation and Evolution of Planetary Systems (FEPS). Using IRAC we study the fraction of young stars that exhibit 3.6-8.0 micron infrared emission in excess of that expected from the stellar photosphere, as a function of age from 3-30 Myr. The most straightforward interpretation of such excess emission is the presence of hot (300-1000K) dust in the inner regions (< 3 AU) of a circumstellar disk. Five out of the 74 young stars show a strong infrared excess, four of which have estimated ages of 3-10 Myr. While we detect excesses from 5 optically thick disks, and photospheric emission from the remainder of our sample, we do not detect any excess emission from optically thin disks at these wavelengths. We compare our results with accretion disk fractions detected in previous studies, and use the ensemble results to place additional constraints on the dissipation timescales for optically-thick, primordial disks.
We provide an overview of the Spitzer Legacy Program ``Formation and Evolution of Planetary Systems (FEPS) which was proposed in 2000, begun in 2001, and executed aboard the Spitzer Space Telescope between 2003 and 2006. This program exploits the sensitivity of Spitzer to carry out mid-infrared spectrophotometric observations of solar-type stars. With a sample of ~ 328 stars ranging in age from ~ 3 Myr to ~ 3 Gyr, we trace the evolution of circumstellar gas and dust from primordial planet-building stages in young circumstellar disks through to older collisionally generated debris disks. When completed, our program will help define the time scales over which terrestrial and gas giant planets are built, constrain the frequency of planetesimal collisions as a function of time, and establish the diversity of mature planetary architectures. In addition to the observational program, we have coordinated a concomitant theoretical effort aimed at understanding the dynamics of circumstellar dust with and without the effects of embedded planets, dust spectral energy distributions, and atomic and molecular gas line emission. Together with the observations, these efforts will provide astronomical context for understanding whether our Solar System - and its habitable planet - is a common or a rare circumstance. Additional information about the FEPS project can be found on the team website: feps.as.arizona.edu
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا