Do you want to publish a course? Click here

The host galaxy/AGN connection in nearby early-type galaxies. Is there a miniature radio-galaxy in every core galaxy?

100   0   0.0 ( 0 )
 Added by Barbara Balmaverde
 Publication date 2005
  fields Physics
and research's language is English
 Authors B. Balmaverde




Ask ChatGPT about the research

This is the second of a series of three papers exploring the connection between the multiwavelength properties of AGN in nearby early-type galaxies and the characteristics of their hosts. In Capetti et al. (2005) we presented a study of the surface brightness profiles for the 65 objects with available archival HST images out of the 116 radio-detected galaxies. We classified early-type galaxies into ``core and ``power-law galaxies, discriminating on the basis of the slope of their nuclear brightness profiles. Here we focus on the 29 core galaxies (hereafter CoreG). We used HST and Chandra data to isolate their nuclear emission. The CoreG invariably host radio-loud nuclei, with an average radio-loudness parameter of Log R = 3.6. The optical and X-ray nuclear luminosities correlate with the radio-core power, smoothly extending the analogous correlations already found for low luminosity radio-galaxies. This supports the interpretation of a common non-thermal origin of the nuclear emission also for CoreG. The luminosities of the nuclear sources, most likely dominated by jet emission, set firm upper limits, as low as L/L_Edd = 10^{-9} in both the optical and X-ray band, on any emission from the accretion process. The similarity of CoreG and LLRG indicates that they are drawn from the same population of early-type galaxies. LLRG represent only the tip of the iceberg associated with (relatively) high activity levels, with CoreG forming the bulk of the population. A minimum black hole mass of M_{BH} = 10^8 M_sun is apparently associated with the radio-loud nuclei in both CoreG and LLRG, but this effect must be tested on a sample of less luminous galaxies, likely to host smaller black holes. ABRIDGED.

rate research

Read More

This is the first of a series of three papers exploring the connection between the multiwavelength properties of AGNs in nearby early-type galaxies and the characteristics of their hosts. We selected two samples, both with high resolution 5 GHz VLA observations available and providing measurements down to 1 mJy level, reaching radio-luminosities as low as 10^19 W/Hz. We focus on the 116 radio-detected galaxies as to boost the fraction of AGN with respect to a purely optically selected sample. Here we present the analysis of the optical brightness profiles based on archival HST images, available for 65 objects. We separate early-type galaxies on the basis of the slope of their nuclear brightness profiles, into core and power-law galaxies following the Nukers scheme, rather than on the traditional morphological classification (i.e. into E and S0 galaxies). Our sample of AGN candidates is indistinguishable, when their brightness profiles are concerned, from galaxies of similar optical luminosity but hosting weaker (or no) radio-sources. We confirm previous findings that relatively bright radio-sources (L_r > 10^(21.5) W/Hz) are uniquely associated to core galaxies. However, below this threshold in radio-luminosity core and power-law galaxies coexist and they do not show any apparent difference in their radio-properties. Not surprisingly, since our sample is deliberately biased to favour the inclusion of active galaxies, we found a higher fraction of optically nucleated galaxies. Addressing the multiwavelength properties of these nuclei will be the aim of the two forthcoming papers.
[ABRIDGED] This is the third in a series of three papers exploring the connection between the multiwavelength properties of AGN in nearby early-type galaxies and the characteristics of their hosts. We selected 116 AGN candidates requiring a radio flux of 1 mJy. We classified the objects with HST images into ``core and ``power-law galaxies, on the basis of the nuclear slope of their brightness profiles. We used HST and Chandra data to isolate their nuclear emission to study the multiwavelength behaviour of their nuclei. The properties of the nuclei hosted by the 29 core galaxies were presented in Paper II. Core galaxies invariably host a radio-loud nucleus, with a median radio-loudness of Log R = 3.6 and an X-ray based radio loudness parameter of Log R,X = -1.3. Here we discuss the properties of the nuclei of the 22 ``power-law galaxies. They show a substantial excess of optical and X-ray emission with respect to core galaxies at the same level of radio luminosity. Conversely, their radio-loudness parameters, Log R ~ 1.6 and Log R,X ~ -3.3, are similar to those measured in Seyfert galaxies. Thus the radio-loudness of AGN hosted by early-type galaxies appears to be univocally related to the hosts brightness profile: radio-loud AGN are only hosted by core galaxies, while radio-quiet AGN are found only in power-law galaxies. The brightness profile is determined by the galaxys evolution, through its merger history; our results suggest that the same process sets the AGN flavour.
[ABRIDGED] We recently presented evidence of a connection between the brightness profiles of nearby early-type galaxies and the properties of the AGN they host. The radio loudness of the AGN appears to be univocally related to the hosts brightness profile: radio-loud nuclei are only hosted by ``core galaxies while radio-quiet AGN are only found in ``power-law galaxies. We extend our analysis here to a sample of 42 nearby (V < 7000 km/s) Seyfert galaxies hosted by early-type galaxies. We used the available HST images to study their brightness profiles. Having excluded complex and highly nucleated galaxies, in the remaining 16 objects the brightness profiles can be successfully modeled with a Nuker law with a steep nuclear cusp characteristic of ``power-law galaxies (with logarithmic slope 0.51 - 1.07). This result is what is expected for these radio-quiet AGN based on our previous findings, thus extending the validity of the connection between brightness profile and radio loudness to AGN of a far higher luminosity. We explored the robustness of this result against a different choice of the analytic form for the brightness profiles, using a Sersic law. In no object could we find evidence of a central light deficit with respect to a pure Sersic model, the defining feature of ``core galaxies in this modeling framework. We conclude that, regardless of the modeling strategy, the dichotomy of AGN radio loudness can be univocally related to the hosts brightness profile. Our general results can be re-phrased as ``radio-loud nuclei are hosted by core galaxies, while radio-quiet AGN are found in non-core galaxies.
We use HST/ACS images and a photometric catalog of the COSMOS field to analyze morphologies of the host galaxies of approximately 400 AGN candidates at redshifts 0.3 < z < 1.0. We compare the AGN hosts with a sample of non-active galaxies drawn from the COSMOS field to match the magnitude and redshift distribution of the AGN hosts. We perform 2-D surface brightness modeling with GALFIT to yield host galaxy and nuclear point source magnitudes. X-ray selected AGN host galaxy morphologies span a substantial range that peaks between those of early-type, bulge-dominated and late-type, disk-dominated systems. We also measure the asymmetry and concentration of the host galaxies. Unaccounted for, the nuclear point source can significantly bias results of these measured structural parameters, so we subtract the best-fit point source component to obtain images of the underlying host galaxies. Our concentration measurements reinforce the findings of our 2-D morphology fits, placing X-ray AGN hosts between early- and late-type inactive galaxies. AGN host asymmetry distributions are consistent with those of control galaxies. Combined with a lack of excess companion galaxies around AGN, the asymmetry distributions indicate that strong interactions are no more prevalent among AGN than normal galaxies. In light of recent work, these results suggest that the host galaxies of AGN at these X-ray luminosities may be in a transition from disk-dominated to bulge-dominated, but that this transition is not typically triggered by major mergers.
In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity which, in tandem with a redshift measurement, can be used for fundamental physical investigations. While every fast radio burst has a dispersion measurement, none before now have had a redshift measurement, due to the difficulty in pinpointing their celestial coordinates. Here we present the discovery of a fast radio burst and the identification of a fading radio transient lasting $sim 6$ days after the event, which we use to identify the host galaxy; we measure the galaxys redshift to be $z=0.492pm0.008$. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionised baryons in the intergalactic medium of $Omega_{mathrm{IGM}}=4.9 pm 1.3%$, in agreement with the expectation from WMAP, and including all of the so-called missing baryons. The $sim6$-day transient is largely consistent with a short gamma-ray burst radio afterglow, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting there are at least two classes of bursts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا