No Arabic abstract
Strong observational evidence for a fluctuating ultraviolet background (UVB) has been accumulating through a number of studies of the HI and HeII Lya forest as well as accurate IGM metallicity measurements. UVB fluctuations could arise both from the inhomogeneous distribution of the ionizing sources and/or from radiative transfer (RT) through the filamentary IGM. In this study we investigate, via numerical simulations, the role of RT effects such as shadowing, self-shielding and filtering of the ionizing radiation, in giving raise to a fluctuating UVB. We focus on possible detectable signatures of these effects on quantities derived from Lya forest spectra, as photoionization rate fluctuations, eta parameter (the HeII to HI column density ratio) distributions and the IGM temperature at redshift about 3. We find that RT induces fluctuations up to 60% in the UVB, which are tightly correlated to the density field. The UVB mean intensity is progressively suppressed toward higher densities and photon energies above 4 Ryd, due to the high HeII opacity. Shielding of overdense regions (Delta > 5) from cosmic HeII ionizing radiation, produces a decreaseing trend of eta with overdensity. Furthermore we find that the mean eta value inferred from HI-HeII Lya forest observations can be explained only by properly accounting for the actual IGM opacity. We outline and discuss several implications of our findings.
Twisted two-dimensional bilayer materials exhibit many exotic physical phenomena. Manipulating the twist angle between the two layers enables fine control of the physical structure, resulting in development of many novel physics, such as the magic-angle flat-band superconductivity, the formation of moire exciton and interlayer magnetism. Here, combined with analogous principles, we study theoretically the near-field radiative heat transfer (NFRHT) between two twisted hyperbolic systems. This two twisted hyperbolic systems are mirror images of each other. Each twisted hyperbolic system is composed of two graphene gratings, where there is an angle {phi} between this two graphene gratings. By analyzing the photonic transmission coefficient as well as the plasmon dispersion relation of twisted hyperbolic system, we prove that the topological transitions of the surface state at a special angle (from open (hyperbolic) to closed (elliptical) contours) can modulate efficiently the radiative heat transfer. Meanwhile the role of the thickness of dielectric spacer and vacuum gap on the manipulating the topological transitions of the surface state and the NFRHT are also discussed. We predict the hysteresis effect of topological transitions at a larger vacuum gap, and demonstrate that as thickness of dielectric spacer increase, the transition from the enhancement effect of heat transfer caused by the twisted hyperbolic system to a suppression. This technology could novel mechanism and control method for NFRHT, and may open a promising pathway for highly efficient thermal management, energy harvesting, and subwavelength thermal imaging.
In this paper, we use large-angle, nearby galaxy redshift surveys to investigate the relationship between the 81 low-redshift Lya absorbers in our HST/GHRS survey and galaxies, superclusters, and voids. In a subsample of 46 Lya absorbers located in regions where the February 8, 2000 CfA catalog is complete down to at least L* galaxies, the nearest galaxy neighbors range from 100kpc to >10 Mpc. Of these 46 absorbers, 8 are found in galaxy voids. After correcting for pathlength and sensitivity, we find that 22+-8% of the Lya absorbers lie in voids, which requires that at least some low-column density absorbers are not extended halos of individual bright galaxies. The number density of these clouds yields a baryon fraction of 4.5+-1.5% in voids. The stronger Lya absorbers (10^{13.2-15.4} cm^-2) cluster with galaxies more weakly than galaxies cluster with each other, while the weaker absorbers (10^{12.4-13.2} cm^-2) are more randomly distributed. The median distance from a low-z Lya absorber in our sample to its nearest galaxy neighbor (~500 kpc) is twice the median distance between bright galaxies in the same survey volume. This makes any purposed association between these Lya absorbers and individual galaxies problematic. The suggested correlation between Lya absorber equivalent width (W) and nearest-galaxy impact parameter does not extend to W<200mA, or to impact parameters >200kpc. Instead, we find statistical support for the contention that absorbers align with large-scale filaments of galaxies. While some strong (W>400mA) Lya absorbers may be gas in the extended gaseous halos of individual galaxies, much of the local Lya forest appears to be associated with the large-scale structures of galaxies and some with voids.
We show that the use of Doppler shifts of Zeeman sensitive spectral lines to observe wavesn in sunspots is subject to measurement specific phase shifts arising from, (i) altered height range of spectral line formation and the propagating character of p mode waves in penumbrae, and (ii) Zeeman broadening and splitting. We also show that these phase shifts depend on wave frequencies, strengths and line of sight inclination of magnetic field, and the polarization state used for Doppler measurements. We discuss how these phase shifts could contribute to local helioseismic measurements of surface effects in sunspot seismology.
In quintessence models, the dark energy content of the universe is described by a slowly rolling scalar field whose pressure and energy density obey an equation of state of the form p=w $rho$; w is in general a function of time such that w<-1/3, in order to drive the observed acceleration of the Universe today. The cosmological constant model LCDM corresponds to the limiting case w=-1. In this paper, we explore the prospects of using the Lyman-alpha forest to constrain w, using semi-analytical techniques to model the intergalactic medium (IGM). A different value of w changes both the growth factor and the Hubble parameter as a function of time. The resulting change in the optical depth distribution affects the optical depth power spectrum, the number of regions of high transmission per unit redshift and the cross-correlation coefficient of spectra of quasar pairs. These can be detected in current data, provided we have independent estimates of the thermal state of the IGM, its ionization parameter and the baryon density.
Combining Monte Carlo radiative transfer simulations and accurate 2D bulge/disc decompositions, we present a new study to investigate the effects of dust attenuation on the apparent structural properties of the disc and bulge of spiral galaxies. We find that dust affects the results from such decompositions in ways which cannot be identified when one studies dust effects on bulge and disc components separately. In particular, the effects of dust in galaxies hosting pseudo-bulges might be different from those in galaxies hosting classical bulges, even if their dust content is identical. Confirming previous results, we find that disc scale lengths are overestimated when dust effects are important. In addition, we also find that bulge effective radii and Sersic indices are underestimated. Furthermore, the apparent attenuation of the integrated disc light is underestimated, whereas the corresponding attenuation of bulge light is overestimated. Dust effects are more significant for the bulge parameters, and, combined, they lead to a strong underestimation of the bulge-to-disc ratio, which can reach a factor of two in the V band, even at relatively low galaxy inclinations and dust opacities. Nevertheless, it never reaches factors larger than about three, which corresponds to a factor of two in bulge-to-total ratio. Such effect can have an impact on studies of the black hole/bulge scaling relations.