Long Term Variability of Cygnus X-1. IV. Spectral Evolution 1999-2004


Abstract in English

(abbreviated abstract) We present the long term spectral evolution of the Galactic black hole candidate Cygnus X-1 in the X-rays and at 15GHz using ~200 pointed observations taken between early 1999 and late 2004 with RXTE and the Ryle radio telescope. The X-ray spectra are remarkably well described by a simple broken power law spectrum with an exponential cutoff. Physically motivated Comptonization models, e.g., compTT or eqpair, can reproduce this simplicity. Broken power law models reveal a significant linear correlation between the photon index of the lower energy power law and the hardening of the power law at approximately 10keV. Comptonization models show that the bolometric flux of a soft excess (e.g., disk component) is strongly correlated with the compactness ratio of the Comptonizing medium. We also find that the fraction of the time spent in low radio emission/soft X-ray spectral states has increased from ~10% in 1996-2000 to ~34% since early 2000. Radio flares typically occur during state transitions and failed state transitions. There is also a strong correlation between the 10-50keV X-ray flux and the radio luminosity of the source. We demonstrate that rather than there being distinctly separated states, in contrast to the timing properties the spectrum of Cyg X-1 shows variations between extremes of properties, with clear cut examples of spectra at every intermediate point in the observed spectral correlations.

Download