Do you want to publish a course? Click here

Local and Large scale Environment of Seyfert Galaxies

133   0   0.0 ( 0 )
 Added by Manolis Plionis Dr.
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a three-dimensional study of the local (<100 h^-1} kpc) and the large scale (<1 h^{-1} Mpc) environment of the two main types of Seyfert AGN galaxies. For this purpose we use 48 Sy1 galaxies (with redshifts in the range 0.007<z<0.036) and 56 Sy2 galaxies (with 0.004<z<0.020), located at high galactic latitudes, as well as two control samples of non-active galaxies having the same morphological, redshift, and diameter size distributions as the corresponding Seyfert samples. Using the Center for Astrophysics (CfA2) and Southern Sky Redshift Survey (SSRS) galaxy catalogues (m_B~15.5) and our own spectroscopic observations (m_B~18.5), we find that within a projected distance of 100 h^-1 kpc and a radial velocity separation of dv<600 km/sec around each of our AGNs, the fraction of Seyfert 2 galaxies with a close neighbor is significantly higher than that of their control (especially within 75 h^{-1} kpc) and Seyfert 1 galaxy samples, confirming a previous two-dimensional analysis of Dultzin-Hacyan et al. We also find that the large-scale environment around the two types of Seyfert galaxies does not vary with respect to their control sample galaxies. However, in the Seyfert 2 and control galaxy samples do differ significantly when compared to the corresponding Seyfert 1 samples. Since the main difference between these samples is their morphological type distribution, we argue that the large-scale environmental difference cannot be attributed to differences in nuclear activity but rather to their different type of host galaxies.



rate research

Read More

Parallel analysis of the large-scale morphology and local environment of matched active and control galaxy samples plays an important role in studies of the fueling of active galactic nuclei. We carry out a detailed morphological characterization of a sample of 35 Seyfert galaxies and a matched sample of inactive galaxies in order to compare the evidence of non-axisymmetric perturbation of the potential and, in the second part of this paper, to be able to perform a multicomponent photometric decomposition of the Seyfert galaxies. We constructed contour maps, BVRcIc profiles of the surface brightness, ellipticity, and position angle, as well as colour index profiles. We further used colour index images, residual images, and structure maps, which helped clarify the morphology of the galaxies. We studied the presence of close companions using literature data. By straightening out the morphological status of some of the objects, we derived an improved morphological classification and built a solid basis for a further multicomponent decomposition of the Seyfert sample. We report hitherto undetected (to our knowledge) structural components in some Seyfert galaxies - a bar (Ark 479), an oval/lens (Mrk 595), rings (Ark 120, Mrk 376), a nuclear bar and ring (Mrk 352), and nuclear dust lanes (Mrk 590). We compared the large-scale morphology and local environment of the Seyfert sample to those of the control one and found that (1) the two samples show similar incidences of bars, rings, asymmetries, and close companions; (2) the Seyfert bars are generally weaker than the bars of the control galaxies; (3) the bulk of the two samples shows morphological evidence of non-axisymmetric perturbations of the potential or close companions; (4) the fueling of Seyfert nuclei is not directly related to the large-scale morphology and local environment of their host galaxies.
We study the dependence of the properties of group galaxies on the surrounding large-scale environment, using SDSS-DR7 data. Galaxies are ranked according to their luminosity within each group and classified morphologically by the Sersic index. We have considered samples of the host groups in superstructures of galaxies, and elsewhere. We find a significant dependence of the properties of late-type brightest group galaxies on the large-scale environment: they show statistically significant higher luminosities and stellar masses, redder u-r colours, lower star formation activity and longer star-formation time-scale when embedded in superstructures. By contrast, the properties of the early-type brightest group galaxies are remarkably similar regardless of the group global environment. The other group member galaxies exhibit only the local influence of the group they inhabit. Our analysis comprises tests against the dependence on the host group luminosity and we argue that group brightest member properties are not only determined by the host halo, but also by the large-scale structure which can influence the accretion process onto their late-type brightest galaxies.
We explore the properties of the large-scale environment of FR0 radio galaxies belonging to the FR0CAT sample which includes 104 compact radio sources associated with nearby (z<0.05) early-type galaxies. By using various estimators we find that FR0s live in regions of higher than the average galaxies density and a factor two lower density, on average, with respect to FRI radio galaxies. This latter difference is driven by the large fraction (63%) of FR0s located in groups formed by less than 15 galaxies, an environment which FRIs rarely (17%) inhabit. Beside the lack of substantial extended radio emission defining the FR0s class, this is the first significant difference between the properties of these two populations of low power radio galaxies. We interpret the differences in environment between FR0s and FRIs as the due to an evolutionary link between local galaxies density, BH spin, jet power, and extended radio emission.
New tools are needed to handle the growth of data in astrophysics delivered by recent and upcoming surveys. We aim to build open-source, light, flexible, and interactive software designed to visualize extensive three-dimensional (3D) tabular data. Entirely written in the Python language, we have developed interactive tools to browse and visualize the positions of galaxies in the universe and their positions with respect to its large-scale structures (LSS). Motivated by a previous study, we created two codes using Mollweide projection and wedge diagram visualizations, where survey galaxies can be overplotted on the LSS of the universe. These are interactive representations where the visualizations can be controlled by widgets. We have released these open-source codes that have been designed to be easily re-used and customized by the scientific community to fulfill their needs. The codes are adaptable to other kinds of 3D tabular data and are robust enough to handle several millions of objects.
The role played by the large-scale environment on the nuclear activity of radio galaxies (RGs), is still not completely understood. Accretion mode, jet power and galaxy evolution are connected with their large-scale environment from tens to hundreds of kpc. Here we present a detailed, statistical, analysis of the large-scale environment for two samples of RGs up to redshifts $z_mathrm{src}$=0.15. The main advantages of our study, with respect to those already present in the literature, are due to the extremely homogeneous selection criteria of catalogs adopted to perform our investigation. This is also coupled with the use of several clustering algorithms. We performed a direct search of galaxy-rich environments around RGs using them as beacon. To perform this study we also developed a new method that does not appear to suffer by a strong $z_mathrm{src}$ dependence as other algorithms. We conclude that, despite their radio morphological (FR,I $vs$ FR,II) and/or their optical (HERG $vs$ LERG) classification, RGs in the local Universe tend to live in galaxy-rich large-scale environments having similar characteristics and richness. We highlight that the fraction of FR,Is-LERG, inhabiting galaxy rich environments, appears larger than that of FR,IIs-LERG. We also found that 5 out of 7 FR,II-HERGs, with $z_mathrm{src}leq$0.11, lie in groups/clusters of galaxies. However, we recognize that, despite the high level of completeness of our catalogs, when restricting to the local Universe, the low number of HERGs ($sim$10% of the total FR,IIs investigated) prevent us to make a strong statistical conclusion about this source class.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا